留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料固化工艺的直热模具温度场均匀性分析

陆阳 齐俊伟 肖军 石甲琪

陆阳, 齐俊伟, 肖军, 等. 复合材料固化工艺的直热模具温度场均匀性分析[J]. 复合材料学报, 2021, 38(9): 2954-2963. doi: 10.13801/j.cnki.fhclxb.20201222.003
引用本文: 陆阳, 齐俊伟, 肖军, 等. 复合材料固化工艺的直热模具温度场均匀性分析[J]. 复合材料学报, 2021, 38(9): 2954-2963. doi: 10.13801/j.cnki.fhclxb.20201222.003
LU Yang, QI Junwei, XIAO Jun, et al. Analysis on the uniformity of temperature field of direct heating mold for composite material curing process[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2954-2963. doi: 10.13801/j.cnki.fhclxb.20201222.003
Citation: LU Yang, QI Junwei, XIAO Jun, et al. Analysis on the uniformity of temperature field of direct heating mold for composite material curing process[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2954-2963. doi: 10.13801/j.cnki.fhclxb.20201222.003

复合材料固化工艺的直热模具温度场均匀性分析

doi: 10.13801/j.cnki.fhclxb.20201222.003
基金项目: “高档数控机床与基础制造装备”科技重大专项(2017ZX04009001)
详细信息
    通讯作者:

    齐俊伟,硕士,高级工程师,硕士生导师,研究方向为先进复合材料自动化成型技术  E-mail:qijunwei@nuaa.edu.cn

  • 中图分类号: TB332

Analysis on the uniformity of temperature field of direct heating mold for composite material curing process

  • 摘要: 针对复合材料固化成型工艺的直热模具温度场均匀性进行了研究。建立模具温度场和复合材料固化反应温度场的耦合传热学模型,并对该模型进行有限元建模仿真分析。针对影响模具表面温度均匀性的主要因素,即电加热管的间距和功率,设计正交试验优化,优化后模具表面最大温差为3.5℃,达到行业标准。此外,对影响温度场均匀性的其他因素,即加热管与模具的接触热阻、复合材料层合板厚度进行了探讨,接触热阻的存在使得模具表面最大温差达到7.24℃,模具加热到指定温度多用时800 s,降低了效率。研究层合板对模具温度均匀性的影响时发现未加入复合材料时模具表面最大温差为4.44℃,加入层合板耦合后最大温差为3.5℃;厚度为毫米级时,层合板对直热模具表面温度均匀性影响不大。

     

  • 图  1  复合材料直热模具综合传热示意图

    Figure  1.  Schematic diagram of comprehensive heat transfer of composite material direct heating mold

    图  2  加热管电阻随温度变化的曲线

    Figure  2.  Curve of heating tube resistance with temperature

    图  3  12层铺层的M21层合板真实放热功率

    Figure  3.  True heat release power of 12-layer M21 laminate

    图  4  复合材料层合板热导率计算串联模型和并联模型

    Figure  4.  Thermal conductivity calculation series model and parallel model of composite laminate

    图  5  复合材料直热模具有限元模型

    Figure  5.  Finite element model of composite material direct heating mold

    图  6  复合材料固化直热模具尺寸和加热管排布间距示意图

    Figure  6.  Schematic diagram of mold size and heating tube arrangement spacing of composite material curing direct heat mold

    图  7  复合材料固化直热模具表面测温点排布

    Figure  7.  Arrangement of temperature measuring points on mold surface of composite material curing direct heat mold

    图  8  复合材料固化直热模具各测温点温度随时间变化情况

    Figure  8.  Temperature of each temperature measurement point changes with time of composite material curing direct heat mold

    图  9  初始加热管设置的模具表面温度云图

    Figure  9.  Mold surface temperature cloud map of initial heating tube setting

    图  10  更换边缘加热管间距和功率后模具表面温度云图

    Figure  10.  Mold surface temperature cloud map after changing the edge heating tube spacing and power

    图  11  横截面a、b、c上模具表面相应的温度值

    Figure  11.  Corresponding temperature value of the mold surface on the cross section a, b, c

    图  12  正交试验优化后模具表面温度云图

    Figure  12.  Mold surface temperature cloud map after orthogonal experiment optimization

    图  13  正交试验优化后横截面a、b、c上模具表面相应的温度值

    Figure  13.  Corresponding temperature value of the mold surface on cross-section a, b, c after optimization by orthogonal test

    图  14  考虑接触热阻时模具表面测温点随时间变化情况

    Figure  14.  Temperature measurement point of the mold surface changes with time when considering the contact thermal resistance

    图  15  未涂抹导热硅脂和涂抹导热硅脂时模具表面温度云图

    Figure  15.  Mold surface temperature cloud map when thermal grease is not applied and when thermal grease is applied

    图  16  无层合板和有层合板且厚度不同时模具表面温度云图

    Figure  16.  Mold surface temperature cloud map when there is no laminate and when there is a laminate and the thickness is different

    表  1  干空气热物理性质

    Table  1.   Thermal physical properties of dry air

    Temperature/℃$\lambda /({10^2}{\rm{W}} \cdot {({\rm{m}} \cdot {\rm{K}})^{ - 1}})$$v/({10^6}{{\rm{m}}^2} \cdot {{\rm{s}}^{ - 1}})$${P_{\rm{r}}}$
    20 2.59 15.06 0.703
    60 2.90 18.97 0.696
    90 3.13 22.10 0.690
    Notes: $\lambda $—Thermal conductivity of dry air; $v$—Acceleration of dry air; ${P_{\rm{r}}}$—Prandtl Number.
    下载: 导出CSV

    表  2  M21预浸料的基本参数

    Table  2.   Basic parameters of M21 prepreg

    ρc/(kg·m−3)Cc/(J·(kg·K)−1)hc/mmVc/wt%kc/(W·(m·K)−1)
    1580 926 0.184 ${V_{\rm{f}}}$=59.2
    ${V_{\rm{r}}}$=40.8
    ${\lambda _{\rm{P}}}$=2.56
    ${\lambda _{\rm{T}}}$=1.48
    Notes: ρc—Density of M21 prepreg; Cc—Specific heat capacity of M21 prepreg; hc—Thickness of every piece of prepreg; ${V_{\rm{c}}}$—Volume fraction; ${V_{\rm{f}}}$—Volume fraction of carbon fiber; ${V_{\rm{r}}}$—Volume fraction of epoxy resin; kc—Thermal conductivity of M21 prepreg; ${\lambda _{\rm{P}}}$—Thermal conductivity of the prepreg along the fiber direction; ${\lambda _{\rm{T}}}$—Thermal conductivity of the prepreg perpendicular to the fiber direction.
    下载: 导出CSV

    表  3  结构钢的物性参数

    Table  3.   Physical parameters of structural steel

    ${\rho _{\rm{m}}}$/
    (kg·m−3)
    ${C_{\rm{m}}}$/
    (J·(kg·K)−1)
    km/(W·(m·K)−1)
    20℃120℃205℃
    7850 434 60.4 55.9 52.1
    Notes: ρm—Density of structural steel; Cm—Specific heat capacity of structural steel; km—Thermal conductivity of structural steel.
    下载: 导出CSV

    表  4  加热管具体参数

    Table  4.   Heating tube specific parameters

    L1/mmL2/mmL3/mmP1/WP2/WP3/W
    336640300300300
    下载: 导出CSV

    表  5  正交实验前加热管设置

    Table  5.   Heating tube setting before orthogonal experiment

    L1/mmL2/mmL3/mmP1/WP2/WP3/W
    336625300300400
    下载: 导出CSV

    表  6  正交试验因素水平

    Table  6.   Orthogonal test factor level

    LevelFactor
    L1/mmL2/mmP1/WP2/W
    13570350250
    23966300300
    34362250350
    下载: 导出CSV

    表  7  正交试验方案及结果

    Table  7.   Orthogonal test plan and results

    Test numberFactorMaximum temperature
    difference/℃
    L1/mmL2/mmP1/WP2/W
    1 1 1 1 1 6
    2 1 2 2 2 5.11
    3 1 3 3 3 4.82
    4 2 1 2 3 4.65
    5 2 2 3 1 3.51
    6 2 3 1 2 6.39
    7 3 1 3 2 4.51
    8 3 2 1 3 5.46
    9 3 3 2 1 3.95
    下载: 导出CSV

    表  8  正交实验极差分析

    Table  8.   Orthogonal experiment range analysis

    VariableFactor
    L1/mmL2/mmP1/WP2/W
    ${K_1}$ 15.93 15.16 17.85 13.46
    ${K_2}$ 14.55 14.08 13.71 16.01
    ${K_3}$ 13.92 15.16 12.84 14.93
    Excellent level 3 2 3 1
    R 2.01 1.08 5.01 2.55
    Order C>D>A>B
    Notes: ${K_i}(i = 1,2,3)$—Sum of the i-th level test indicators of each factor, R—Extremely poor, that is, the difference between the maximum value and the minimum value of ${K_i}$ in each column.
    下载: 导出CSV
  • [1] 沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008(5):737-740. doi: 10.3969/j.issn.1005-0299.2008.05.036

    SHENG Jun, XIE Huaiqin. Research, development and application of advanced composite materials in the aerospace field[J]. Materials Science and Technology,2008(5):737-740(in Chinese). doi: 10.3969/j.issn.1005-0299.2008.05.036
    [2] 朱晋生, 王卓, 欧峰. 先进复合材料在航空航天领域的应用[J]. 新技术新工艺, 2012(10):76-79. doi: 10.3969/j.issn.1003-5311.2012.10.025

    ZHU Jinshen, WANG Zhuo, OU Feng. Application of advanced composite materials in aerospace[J]. New Technology & New Process,2012(10):76-79(in Chinese). doi: 10.3969/j.issn.1003-5311.2012.10.025
    [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace[J]. Acta Materiae Compositae Sinica,2007(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [4] MAIR R I. Advanced composite structures research in Australia[J]. Composite Structures,2002,57(1-4):3-10. doi: 10.1016/S0263-8223(02)00058-2
    [5] 韩远飞, 孙相龙, 邱培坤. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8):1625-1635.

    HAN Yuanfei, SUN Xianglong, QIU Peikun. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [6] 晏冬秀, 刘卫平, 黄钢华. 复合材料热压罐成型模具设计研究[J]. 航空制造技术, 2012(7):49-52. doi: 10.3969/j.issn.1671-833X.2012.07.006

    YAN Dongxiu, LIU Weiping, HUANG Ganghua. Design and research of molding die for composite material autoclave[J]. Aeronautical Manufacturing Technology,2012(7):49-52(in Chinese). doi: 10.3969/j.issn.1671-833X.2012.07.006
    [7] 唐爱霞. 拉挤玻璃钢的成型工艺及市场开发前景[J]. 玻璃钢/复合材料, 1996(2):52.

    TANG Aixia. The forming process and market development prospect of pultruded FRP[J]. Fiber Reinforced Plastics/Composite,1996(2):52(in Chinese).
    [8] 赵洪凯, 钱春香, 周效谅. 拉挤工艺成型连续纤维增强热塑性FRP的性能研究[J]. 化学建材, 2006(1):23-25.

    ZHAO Hongkai, QIAN Chunxiang, ZHOU Xiaoliang. Study on properties of continuous fiber reinforced thermoplastic FRP formed by pultrusion process[J]. Green Building,2006(1):23-25(in Chinese).
    [9] 齐俊伟, 宋伟, 肖军. C_f/E预浸料先进拉挤固化工艺[J]. 宇航材料工艺, 2011, 41(5):44-49. doi: 10.3969/j.issn.1007-2330.2011.05.011

    QI Junwei, SONG Wei, XIAO Jun. Advanced pultrusion curing process of C_f/E prepreg[J]. Aerospace Materials and Technology,2011,41(5):44-49(in Chinese). doi: 10.3969/j.issn.1007-2330.2011.05.011
    [10] 王健, 郑学丰, 付昌云. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794.

    WANG Jian, ZHENG Xuefeng, FU Changyun. Deep drawing characteristics of carbon fiber/epoxy resin compositealuminum alloy laminates[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese).
    [11] 花蕾蕾, 安鲁陵, 匡海华. 复合材料构件热压罐成型模具温度均匀性分析[J]. 南京航空航天大学学报, 2019, 51(3):357-365.

    HUA Leilei, AN Luling, KUANG Haihua. Analysis of temperature field uniformity of composite mold in autoclave[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(3):357-365(in Chinese).
    [12] 王宇, 齐俊伟, 王跃全. 多区间热压对拉挤制件成型质量的影响[J]. 玻璃钢/复合材料, 2019(10):10-18.

    WANG Yu, QI Junwei, WANG Yuequan. The influence of multi-zone hot pressing on the forming quality of pultruded parts[J]. Fiber Reinforced Plastics/Composite,2019(10):10-18(in Chinese).
    [13] 齐俊伟, 李勇, 肖军. 先进拉挤成形技术及其在大飞机复合材料结构中的应用[J]. 航空制造技术, 2011(15):58-60. doi: 10.3969/j.issn.1671-833X.2011.15.012

    QI Junwei, LI Yong, XIAO Jun. Advanced pultrusion technology and its application in the composite structure of large aircraft[J]. Aeronautical Manufacturing Technology,2011(15):58-60(in Chinese). doi: 10.3969/j.issn.1671-833X.2011.15.012
    [14] CHEN S C, JONG W R, CHANG J A. Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line[J]. Journal of Applied Polymer Science,2006,101(2):1174-1180. doi: 10.1002/app.24070
    [15] CHEN S C, PENG H S, CHANG J A. Simulations and verifications of induction heating on a mold plate[J]. International Communications in Heat and Mass Transfer,2004,31(7):971-980. doi: 10.1016/j.icheatmasstransfer.2004.05.007
    [16] CHEN S C, JONG W R, CHANG Y J. Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology[J]. Journal of Micromechanics and Microengineering,2006,16(9):1783-1791. doi: 10.1088/0960-1317/16/9/005
    [17] HUANG M S, HUANG Y L. Effect of multi-layered induction coils on efficiency and uniformity of surface heating[J]. International Journal of Heat and Mass Transfer,2010,53(11-12):2414-2423. doi: 10.1016/j.ijheatmasstransfer.2010.01.042
    [18] 戴春晖. 大型复合材料模具内置循环水加热系统设计研究[D]. 长沙: 国防科学技术大学, 2007.

    DAI Chunhui. Design and research on the built-in circulating water heating system of large composite material mould[D]. Changsha: National University of Defense Technology, 2007(in Chinese).
    [19] 史红瑞, 李文斌. 喷管模压料成型过程温度控制系统的研究[J]. 机械工程与自动化, 2008(4):129-131, 134. doi: 10.3969/j.issn.1672-6413.2008.04.048

    SHI Hongrui, LI Wenbing. Research on temperature control system of nozzle molding material[J]. Mechanical Engineering & Automation,2008(4):129-131, 134(in Chinese). doi: 10.3969/j.issn.1672-6413.2008.04.048
    [20] 李金国, 蒋宁, 高增梁. 反应成型模具耦合温度场数值模拟与试验研究[J]. 机械工程学报, 2014, 50(8):73-80. doi: 10.3901/JME.2014.08.073

    LI Jingguo, JIANG Ning, GAO Zengliang. Numerical simulation and experimental research on coupled temperature field of reaction molding die[J]. Journal of Mechanical Engineering,2014,50(8):73-80(in Chinese). doi: 10.3901/JME.2014.08.073
    [21] 姜碧羽, 齐俊伟, 刘小林. 预浸料先进拉挤成型的固化传热过程数值模拟[J]. 复合材料学报, 2020, 37(6):1496-1504.

    JIANG Biyu, QI Junwei, LIU Xiaolin. Numerical simulation of curing and heat transfer process of prepreg in advanced pultrusion[J]. Acta Materiae Compositae Sinica,2020,37(6):1496-1504(in Chinese).
    [22] PILLING M, YATES B, BLACK M. The thermal conductivity of carbon fibre-reinforced composites[J]. Journal of Materials Science,1979(14):1326-1338.
    [23] SPRINGER S G, TSAI S W. Thermal conductivity of unidirectional materials[J]. Journal of Composite Materials,1967(1):166-173.
    [24] ADAMS D, DONER D. Longitudinal shear loading of a unidirectional composite[J]. Journal of Composite Materials,1967(1):4-17.
    [25] SAFONOV A A, CARLONE P, AKHATOV I. Mathematical simulation of pultrusion processes: A review[J]. Compo-site Structures,2018(184):153-177.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  411
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 录用日期:  2020-12-14
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回