留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钆螯合氧化钨纳米复合材料的制备及光热性能

高晓飞 李雪姣 刘东岳 陈国龙 付海洋 董丽敏

高晓飞, 李雪姣, 刘东岳, 等. 钆螯合氧化钨纳米复合材料的制备及光热性能[J]. 复合材料学报, 2021, 38(9): 2973-2978. doi: 10.13801/j.cnki.fhclxb.20201214.001
引用本文: 高晓飞, 李雪姣, 刘东岳, 等. 钆螯合氧化钨纳米复合材料的制备及光热性能[J]. 复合材料学报, 2021, 38(9): 2973-2978. doi: 10.13801/j.cnki.fhclxb.20201214.001
GAO Xiaofei, LI Xuejiao, LIU Dongyue, et al. Preparation and photothermal properties of gadolinium chelated tungsten oxide nanocomposite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2973-2978. doi: 10.13801/j.cnki.fhclxb.20201214.001
Citation: GAO Xiaofei, LI Xuejiao, LIU Dongyue, et al. Preparation and photothermal properties of gadolinium chelated tungsten oxide nanocomposite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2973-2978. doi: 10.13801/j.cnki.fhclxb.20201214.001

钆螯合氧化钨纳米复合材料的制备及光热性能

doi: 10.13801/j.cnki.fhclxb.20201214.001
基金项目: 中国博士后科学基金(2019M651940);黑龙江省普通本科高等学校青年创新人才培养计划(2018204);黑龙江省科学基金项目(QC2017056)
详细信息
    通讯作者:

    李雪姣,博士,讲师,硕士生导师,研究方向为无机纳米功能材料的可控合成及其在生物、催化等领域的应用Email: lixuejiao@hrbust.edu.cn

  • 中图分类号: TB3333

Preparation and photothermal properties of gadolinium chelated tungsten oxide nanocomposite

  • 摘要: 采用溶剂热法,以氯化钨(WCl6)为原料制备氧化钨(W18O49)纳米粒子,进一步利用微乳液法合成钆(Gd)螯合氧化钨(W18O49-DTPA/Gd)纳米复合材料。通过XRD、SEM、TEM对其结构和形貌进行表征,结果表明样品的结晶度高,分散性好,梭形形貌,长约为640 nm,宽约为160 nm左右,W和Gd元素均匀的分布于样品中。对W18O49-DTPA/Gd的光热性能进行测试,采用808 nm近红外光照射10 min时,样品的水溶液温度可升高到46.9℃,满足光热治疗癌症的温度要求,而对照组纯水的温度几乎无变化。样品同时具有电子计算机断层扫描(CT)成像功能,成像效果随着浓度增加而加强,与纯W18O49相比,成像效果无明显变化。与人正常干细胞(LO2细胞)共培养24 h,在不同的样品浓度下细胞存活率仍在85%以上。

     

  • 图  1  氧化钨(W18O49)-二乙烯三胺五乙酸(DTPA)-钆(Gd)的XRD图谱和W18O49的标准PDF卡

    Figure  1.  XRD patterns of tungstic oxide (W18O49)-diethylenetriamine pentaacetic acid (DTPA)-gadolinium (Gd) and the standard PDF cards for W18O49

    图  2  W18O49-DTPA/Gd的SEM图像和EDS能谱图: (a, b) W18O49-DTPA/Gd;(c) W元素分布;(d) Gd元素分布

    Figure  2.  SEM images and EDS spectrum of W18O49-DTPA/Gd: (a, b) W18O49-DTPA/Gd; (c) W element distribution; (d) Gd element distribution

    图  3  W18O49-DTPA/Gd的TEM图像

    Figure  3.  TEM images of W18O49-DTPA/Gd

    图  4  W18O49-DTPA/Gd和W18O49在NIR-808 nm下的光热性能: (a)纯水;(b)浓度为0.1 mg/mL的W18O49-DTPA/Gd水溶液;(c) 浓度为1 mg/mL的W18O49-DTPA/Gd 水溶液;(d) 浓度1 mg/mL的W18O49水溶液

    Figure  4.  Photothermal performance of W18O49-DTPA/Gd and W18O49 at NIR-808 nm:(a) Pure water;(b) W18O49-DTPA/Gd aqueous solution with a concentration of 0.1 mg/mL;(c) W18O49-DTPA/Gd aqueous solution with a concentration of 1 mg/mL;(d) W18O49 aqueous solution with a concentration of 1 mg/mL

    图  5  W18O49和W18O49-DTPA/Gd的CT对比图像

    Figure  5.  CT contrast images of W18O49-DTPA/Gd and W18O49

    图  6  样品孵育24 h后用标准MTT法定量分析后的W18O49-DTPA/Gd样品LO2细胞生物相容性

    Figure  6.  LO2 cells viability of W18O49-DTPA/Gd sample after incubating with samples for 24 h and quantitative assays by standard MTT method

  • [1] RAHMANIAN N, ESKANDANI M, BARAR J, et al. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines[J]. Drug Target,2017,25(3):202-215.
    [2] 许广全, 刘德宝, 丁鹏飞, 等. 超声辅助制备β-磷酸三钙/Mg-Zn-Ca生物复合材料及性能[J]. 复合材料学报, 2019, 36(9):2131-2138.

    XU Guangquan, LIU Debao, DING Pengfei, et al. Ultrasonic aided fabrication and properties of β-tricalcium phosphate/Mg-Zn-Ca biocomposites[J]. Acta Materiae Compositae Sinica,2019,36(9):2131-2138(in Chinese).
    [3] SWEENEY S K, LUO Y, O′DONNELL M A, et al. Peptide-mediated targeting mesoporous silica nanoparticles: A novel tool for fighting bladder cancer[J]. Biomed. Nanotechnol,2017,13(2):232-242.
    [4] DAS M, NARIYA P, JOSHI A, et al. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal[J]. Carbohydrate Polymers,2020,247:116751.
    [5] ZUO H Q, TAO J X, SHI H, et al. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy[J]. Acta Biomaterialia,2018,80:296-307.
    [6] MU J N, MENG X Y, CHEN L, et al. Highly stable and biocompatible W18O49@PEG-PCL hybrid nanospheres combining CT imaging and cancer photothermal therapy[J]. RSC Advances,2017,7(18):10692-10699.
    [7] SHAN L W, LIU Y T. Er3+, Yb3+ doping induced core-shell structured BiVO4 and near-infrared photocatalytic properties[J]. Industrial & Engineering,2016,416:1-9.
    [8] DIWAKAR M, KUMAR M. A review on CT image noise and its denoising[J]. Biomedical Signal Processing and Control,2018,42:73-88.
    [9] ZHOU M, LI J J, LIANG S, et al. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal[J]. Therapy ACS Nano,2015,9(7):7085-7096.
    [10] LI J C, HU Y, YANG J, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors[J]. Biomaterials,2015,38:10-21.
    [11] XU H Y, LI B, SHI T N, et al. Nanoparticles of magnetite anchored onto few-layer graphene: A highly efficient Fenton-like nanocomposite catalyst[J]. Journal of Colloid and Interface Science,2018,532:161-170.
    [12] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/g-C3N4 Z型光催化材料的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1): 209-220.

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/g-C3N4 Z-Scheme photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220(in Chinese).
    [13] YANG Y Y, ZHANG X G, NIU C G, et al. Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation applied catalysis[J]. Applied Catalysis B: Environmental,2020,264:118465.
    [14] DONG L M, LIU D Y, FU H Y, et al. Synthesis and photocatalytic activity of Fe3O4-WO3-CQD multifunctional systemtions[J]. Journal of Inorganic and Organometallic Polymers and Materials,2019,29(4):1297-1304.
    [15] LIU P, WANG Y R, AN L, et al. Ultrasmall WO3–x@γ-poly-l-glutamic acid nanoparticles as a photoacoustic imaging and effective photothermal-enhanced chemodynamic therapy agent for cancer[J]. ACS Applied Materials & Interfaces,2018,10(45):38833-38844.
    [16] GAO Y, WANG F, HUANG W, et al. SnxWO3 as a theranostic platform for realizing multi-imaging-guided photothermal/photodynamic combination therapy[J]. Nanoscale,2019,11(7):3300-3310.
    [17] LIU Y L, JI X Y, LIU J H, et al. Tantalum sulfide nanosheets as a theranostic nanoplatform for computed tomography imaging-guided combinatorial chemo-photothermal therapy[J]. Advanced Functional Materials,2017,27(39):1703261.
    [18] NARMANI A, FARHOOD B, HAMED H A, et al. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy[J]. Journal of Drug Delivery Science and Technology,2018,44:457-466.
    [19] PETRAITIS V, PETRAITIENE R, JESSICA M V, et al. Amphotericin B penetrates into the central nervous system through focal disruption of the blood-brain barrier in experimental hematogenous Candida meningoencephalitis[J]. Antimicrob Agents Chemother,2019,63(12):e01626.
    [20] LIAO W, LEI P, PAN J, et al. Bi-DTPA as a high-performance CT contrast agent for in vivo imaging[J]. Biomaterials,2019,230:1-11.
    [21] LI B, XIAO H, CAI M, et al. Molecular probe crossing blood-brain barrier for bimodal imaging-guided photothermal/photodynamic therapies of intracranial glioblastoma[J]. Advanced Functional Materials,2020,30(12):1909117.
    [22] XU F, LI X, CHEN H, et al. Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy[J]. Journal of Materials Chemistry B,2020,8(44):10136-10145.
    [23] 朱江源, 梁浩, 刘芳, 等. 溶剂种类对W18O49微观形貌和光致发光性能影响的研究[J]. 化学工程师, 2017, 31(1):1-3.

    ZHU Jiangyuan, LIANG Hao, LIU Fang, et al. Study on the micro morphology and photoluminescence properties of W18O49 for the different solvent[J]. Chemical Engineer,2017,31(1):1-3(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  341
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 录用日期:  2020-12-05
  • 网络出版日期:  2020-12-14
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回