留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征

易泽德 廖木荣 康帆 赵波 秦志永

易泽德, 廖木荣, 康帆, 等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征[J]. 复合材料学报, 2021, 38(9): 3035-3043. doi: 10.13801/j.cnki.fhclxb.20201210.005
引用本文: 易泽德, 廖木荣, 康帆, 等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征[J]. 复合材料学报, 2021, 38(9): 3035-3043. doi: 10.13801/j.cnki.fhclxb.20201210.005
YI Zede, LIAO Murong, KANG Fan, et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3035-3043. doi: 10.13801/j.cnki.fhclxb.20201210.005
Citation: YI Zede, LIAO Murong, KANG Fan, et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3035-3043. doi: 10.13801/j.cnki.fhclxb.20201210.005

甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征

doi: 10.13801/j.cnki.fhclxb.20201210.005
基金项目: 国家自然科学基金(31760188);广西创新驱动发展专项(桂科 AA17204087-15)
详细信息
    通讯作者:

    秦志永,博士,讲师,硕士生导师,研究方向为木质材料表界面 E-mail:qinzhiyong@gxu.edu.cn

  • 中图分类号: TB306

Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate

  • 摘要: 利用聚多巴胺(PDA)涂层黏附和去质子化的特性,采用甲基硅酸钠(SMS)刻蚀PDA涂层,进一步采用十八烷基三甲氧基氯硅烷(OTS)对其进行低表面能处理制备了稳固型超疏水木材(Wood@PDA-SMS-OTS)。采用接触角(CA)测定仪、SEM、XPS分别对试样进行了表征。结果表明,水在Wood@PDA-SMS-OTS试样表面的静态CA最高为157.4°,滚动角(SA)为4.3°;SEM图像表明,SMS成功刻蚀了PDA涂层,同时水解生成疏水性的低聚或半聚的甲基硅氧烷覆盖在PDA涂层表面,形成了明显的微纳米粗糙结构;XPS分析表明,PDA在木材的表面形成均匀的涂层,SMS在刻蚀PDA涂层的同时,其水解生成的聚合物成功负载在PDA的表面,含长链结构的OTS接枝在木材的表面,使木材具有超疏水性能;超疏水木材表面经过24 h的水流冲刷、超声波震荡、酸碱腐蚀及有机溶剂等处理后,仍具有较强的超疏水稳固性。

     

  • 图  1  超疏水木材模拟下雨测试示意图

    Figure  1.  Schematic diagram of water resistance test for superhydrophobic wood

    图  2  不同刻蚀时间下Wood@聚多巴胺(PDA)-甲基硅酸钠(SMS)和Wood@PDA-SMS-十八烷基三甲氧基氯硅烷(OTS)的接触角(CA)与滚动角(SA)

    Figure  2.  Contact angle (CA) and sliding angle (SA) of Wood@polydopamine (PDA)-sodium methylsilicate (SMS) and Wood@PDA-SMS-octadecyltrichlorosilane (OTS) with different etching time

    图  3  SMS水解负载在木材表面及OTS接枝示意图

    Figure  3.  Diagram of SMS hydrolysis loading on wood surface and OTS grafting

    图  4  木材试样的SEM图像

    Figure  4.  SEM images of wood samples ((a) Wood (0.3 k); (b) Wood@PDA (0.3 k); (c) Wood@PDA-SMS (2 k, 10 k); (d) Wood@PDA-SMS-OTS (2 k, 10 k))

    图  5  木材试样的XPS扫描图像

    Figure  5.  XPS scanning images of wood specimens

    图  6  Wood@PDA-SMS-OTS在超疏水木材水流冲刷(a)与超声波震荡(b)下的CA

    Figure  6.  CA of superhydrophobic wood under water flow scouring (a) and ultrasonic vibration (b) of Wood@PDA-SMS-OTS

    图  7  木材表面PDA的质子化过程

    Figure  7.  Protonation process of PDA on wood surface

    图  8  超疏水木材在不同pH值溶液(a)和有机溶剂(b)中浸泡24 h后的CA

    Figure  8.  CA of superhydrophobic wood soaked in different pH solutions (a) and organic solvents (b) for 24 h

    THF—Tetra hydro furan

    表  1  木材试样表面的C1sA、C1sB、C1sC含量与氮碳原子比(N/C)、氧碳原子比(O/C)

    Table  1.   Content of C1sA, C1sB and C1sC on the samples surface and the atomic ratios of carbon nitrogen (N/C) and atomic ratios of oxygen carbon (O/C)

    SamplesC1sA/%C1sB/%C1sC/%(N/C)/%(O/C)/%
    Wood 77.4 16.2 6.3 0.6 21.9
    Wood@PDA 70.3 22.4 7.2 3.2 27.9
    Wood@PDA-SMS 83.2 12.0 4.8 1.1 28.8
    Wood@PDA-SMS-OTS 97.4 2.5 0.03 1.0 9.9
    下载: 导出CSV
  • [1] 顾炼百. 木材改性技术发展现状及应用前景[J]. 木材工业, 2012, 26(3):5-10.

    GU Lianbai. Current status and application prospects of wood modification[J]. China Wood Industry,2012,26(3):5-10(in Chinese).
    [2] HUANG Y, FENG Q, YE C, et al. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection[J]. Progress in Organic Coatings,2020,138:105210. doi: 10.1016/j.porgcoat.2019.105210
    [3] NTELIA E, KARAPANAGIOTIS I. Superhydrophobic paraloid B72[J]. Progress in Organic Coatings,2020,139:105224. doi: 10.1016/j.porgcoat.2019.105224
    [4] 杨玉山, 沈华杰, 秦磊等. 木材表面遗态仿生构建类荷叶自清洁超疏水微/纳米结构[J]. 林业工程学报, 2020, 5(5):66.

    YANG Yushan, SHEN Huajie, QIN Lei, et al. Biomimetic fabrication of lotus-leaf-like self-cleaning superhydrophobic wood surface with micro/nano-biomimetic structures using morph-genetic method[J]. Journal of Forestry Engineering,2020,5(5):66(in Chinese).
    [5] GHAZALI N, BASIRUN W J, NOR A M, et al. Super-amphiphobic coating system incorporating functionalized nano-Al2O3 in polyvinylidene fluoride (PVDF) with enhanced corrosion resistance[J]. Coatings,2020,10:387. doi: 10.3390/coatings10040387
    [6] 周凯. 仿生槐叶萍高粘附超疏水表面的制备及研究[D]. 大连: 大连海事大学, 2020.

    ZHOU Kai. The fabrication and research of bio-mimicking salvinia superhydrophobic surface with high adhesion[D]. Dalian: Dalian Maritime University, 2020(in Chinese).
    [7] 郑果林. 利用聚多巴胺制备超疏水/油耐磨棉织物及其性能研究[D]. 无锡: 江南大学, 2020.

    ZHENG Guolin. Preparation and performance of superhydrophobic/superoleophobic wear-resistant cotton fabrics based on polydopamine[D]. Wuxi: Jiangnan University, 2020(in Chinese).
    [8] 刘明, 吴义强, 卿彦等. 木材仿生超疏水功能化修饰研究进展[J]. 功能材料, 2015, 46(14):14012-14018. doi: 10.3969/j.issn.1001-9731.2015.14.002

    LIU Ming, WU Yiqiang, QING Yan, et al. Progress in the research of functional modification on bionic fabrication of superhydrophobic wood[J]. Journal of Functional Materials,2015,46(14):14012-14018(in Chinese). doi: 10.3969/j.issn.1001-9731.2015.14.002
    [9] 卢茜, 胡英成. 层层自组装SiO2/木材复合材料的超疏水性及其形成机制[J]. 功能材料, 2016, 47(7):7109-7113. doi: 10.3969/j.issn.1001-9731.2016.07.021

    LU Qian, HU Yingcheng. The superhydrophobicity of LbL assembly of SiO2/wood composite materials and the formation mechanism[J]. Journal of Functional Materials,2016,47(7):7109-7113(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.07.021
    [10] 刘峰, 王成毓. 木材仿生超疏水功能化制备方法[J]. 科技导报, 2016, 34(19):126.

    LIU Feng, WANG Chengyu. Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces[J]. Science & Technology Review,2016,34(19):126(in Chinese).
    [11] JIA S, LIU M, WU Y, et al. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES[J]. Applied Surface Science,2016,386:115-124. doi: 10.1016/j.apsusc.2016.06.004
    [12] WANG K, DONG Y, YAN Y, et al. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls[J]. Wood Science and Technology,2016,51(2):395-411.
    [13] PANAGIOTIS N. M, IOANNIS K, ANDREAS T, et al. Superhydrophobic composite films produced on various substrates[J]. Langmuir,2008,24(19):11225-11232. doi: 10.1021/la801817e
    [14] WANG S, WANG C, LIU C, et al. Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method[J]. Colloids & Surfaces A-physicochemical & Engineering Aspects,2012,403:29-34.
    [15] WANG C, PIAO C, LUCAS C. Synthesis and characterization of superhydrophobic wood surfaces[J]. Journal of Applied Polymer Science,2011,119(3):1667-1672. doi: 10.1002/app.32844
    [16] 陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展[J]. 高分子通报, 2018(7):42-49.

    CHEN Lijuan, WANG Jun, YAN Yehan, et al. The progress of research and application of polydopamine coatings[J]. Polymer Bulletin,2018(7):42-49(in Chinese).
    [17] 李珍妮, 邓字巍. 仿贻贝黏附性多巴胺的研究与应用进展[J]. 高分子材料科学与工程, 2015, 31(1):185-190.

    LI Zhenni, DENG Ziwei. Progress in research and application of mussel-inspired adhesive dopamine[J]. Polymer Materials Science & Engineering,2015,31(1):185-190(in Chinese).
    [18] XUE C H, JI X Q, ZHANG J, et al. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating[J]. Nanotechnology,2015,26(33):1-9.
    [19] WANG K, DONG Y, YAN Y, et al. Mussel-inspired chemistry for preparation of superhydrophobic surfaces on porous substrates[J]. RSC Advances,2017,7(46):29149-29158. doi: 10.1039/C7RA04790H
    [20] 谭帼馨, 欧阳孔友, 周蕾, 等. pH诱导聚多巴胺表面质子化作用机理及其细胞黏附行为[J]. 中国科学: 化学, 2016, 46(4):373-381. doi: 10.1360/N032015-00146

    TAN Guoxin, OUYANG Kongyou, ZHOU Lei, et al. The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior[J]. Scientia Sinica Chimica,2016,46(4):373-381(in Chinese). doi: 10.1360/N032015-00146
    [21] DELLA VECCHIA N F, LUCHINI A, NAPOLITANO A, et al. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties[J]. Langmuir,2014,30(32):9811-9818. doi: 10.1021/la501560z
    [22] 任庆耀, 陈洪龄. 甲基硅酸钠在抛光砖防污剂中的应用研究[J]. 中国陶瓷, 2011, 47(1):32-36.

    Ren Qingyao, Chen Hongling. Study on the application of methanesiliconic acid sodium salt in antifouling of the polished ceramic tiles[J]. China Ceramics,2011,47(1):32-36(in Chinese).
    [23] 张巧云. 紫铜表面吸附膜的制备及性能研究[J]. 材料保护, 2017, 50(12):38-41, 90.

    ZHANG Qiaoyun. Preparation and performance research of adsorbed film on copper surface[J]. Materials Protection,2017,50(12):38-41, 90(in Chinese).
    [24] KLOSTERMAN L, RILEY J K, BETTINGER C J. Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry[J]. Langmuir,2015,31(11):3451-3458. doi: 10.1021/acs.langmuir.5b00105
    [25] 秦志永, 廖木荣, 张一甫, 等. 基于接触角的木材表界面润湿特性研究现状及问题分析[J]. 北华大学学报(自然科学版), 2019, 20(2):249-255.

    QIN Zhiyong, LIAO Murong, ZHANG Yifu, et al. Wood interface and surface wettability based on contact angle method[J]. Journal of Beihua University (Natural science),2019,20(2):249-255(in Chinese).
    [26] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241
    [27] RYU J, KU S H, LEE M, et al. Bone-like peptide/hydroxyapatite nanocomposites assembled with multi-level hierarchical structures[J]. Soft Matter,2011,7(16):7201-7206. doi: 10.1039/c1sm05307h
    [28] WANG Z, OU J, YING W, et al. Anti-bacterial superhydrophobic silver on diverse substrates based on the mussel-inspired polydopamine[J]. Surface& Coatings Technology,2015,280:378-383.
    [29] TODARO L, D'AURIA M, LANGERAME F, et al. Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation[J]. Surface and Interface Analysis,2015,47(2):206-215. doi: 10.1002/sia.5689
    [30] INARI G N, PETRISSANS M, LAMBERT J, et al. XPS characterization of wood chemical composition after heat-treatment[J]. Surface and Interface Analysis,2006,38(10):1336-1342. doi: 10.1002/sia.2455
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  253
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2020-12-04
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回