留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物基电磁屏蔽复合材料的结构设计与性能研究进展

张梦辉 马忠雷 马建中 黎星 翟炳燕 邵亮

张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5): 1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003
引用本文: 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5): 1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003
ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003
Citation: ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003

聚合物基电磁屏蔽复合材料的结构设计与性能研究进展

doi: 10.13801/j.cnki.fhclxb.20201208.003
基金项目: 陕西省教育厅服务地方专项计划(19JC003);西安市科技计划(2019216514GXRC001CG002-GXYD1.2);咸阳市重大科技专项计划(2018k01-46)
详细信息
    通讯作者:

    邵亮,博士,副教授,硕士生导师,研究方向为高分子复合发泡材料、功能高分子材料等 E-mail:shaoliang@sust.edu.cn

  • 中图分类号: O631;TB33

Research progress of structure design and performance of polymer-based electromagnetic shielding composites

  • 摘要: 对近年来关于聚合物基电磁屏蔽材料的报道进行了综述。重点总结分析了不同结构(如多孔结构、隔离结构和分层结构)及其他特殊结构聚合物基电磁屏蔽材料的屏蔽效能和屏蔽机制。与均匀分布聚合物基复合材料相比,通过结构设计使填料富集,再取向并连通从而形成高效导电网络,不仅能减少填料用量,且能有效提高复合材料的电磁屏蔽性能。最后,提出了聚合物基电磁屏蔽材料的未来发展方向。

     

  • 图  1  多孔材料结构示意图:(a)石墨烯泡沫/聚(3,4-亚乙基二氧噻吩)- 聚(苯乙烯磺酸盐) (PEDOT-PSS)复合材料[10];(b)采用浸涂法制备的PU/石墨烯(PUG)泡沫[19]

    Figure  1.  Schematic diagram of structure of porous materials: (a) Graphene foam/poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composites[10]; (b) Polyurethane (PU)/graphene (PUG) foams fabricated by dip-coating method[19]

    SE—Shielding effectiveness; SSE—Specific shielding effectiveness; SER—Shielding effectiveness by reflection; SEA—Absorption shielding effectiveness; SET—Total shielding effectiveness; EMI—Electromagnetic interference; EM—Electromagnetism; GO—Graphene oxide

    图  2  填料在泡沫中的分布示意图: (a)填料在发泡过程中的再取向[37]; (b)镀银三聚氰胺泡沫-环氧树脂-碳纳米管(SF-EP-CNT)泡沫的EDS图谱((b1) SEM图像; (b2) C元素图谱; (b3) O元素图谱; (b4) Ag元素图谱)[33]

    Figure  2.  Schematic diagram of filler distribution in foam: (a) Re-orient of fillers during foaming[37]; (b) EDS mapping of silver coated melamine foam-epoxy-carbon nanotube (SF-EP-CNT) foams ((b1) SEM image; (b2) C element mapping; (b3) O element mapping; (b4) Ag element mapping)[33]

    图  3  隔离结构材料的结构特点: (a) CNT/聚乳酸(PLA)复合材料的制造过程示意图[42]; (b) PLA/多壁碳纳米管(MWCNT)复合材料的制造过程示意图[38]

    Figure  3.  Structural characteristics of segregated structure materials: (a) Schematic illustration of fabrication procedure of CNT/poly(lactic acid) (PLA) composites[42]; (b) Schematic illustration of fabrication procedure of PLA/multiwalled carbon nanotube (MWCNT) composites[38]

    PDLA—Poly(D-lactide); PLLA—Poly(L-lactide); hc—Homocrystallites; sc—Stereocomplex crystallites; σDC—Direct-current electrical conductivity; λeff—Effective thermal conductivity

    图  4  隔离结构材料中填料分布示意图: (a) 0.1wt% CNT; (b) 0.5wt% CNT; (c) 2.0wt% CNT[44-45]

    Figure  4.  Schematic diagram of filler distribution in segregated structure materials: (a) 0.1wt% CNT; (b) 0.5wt% CNT; (c) 2.0wt% CNT[44-45]

    图  5  “吸收-反射-再吸收”屏蔽机制

    Figure  5.  “Absorption-reflflection-reabsorption” shielding mechanism

    图  6  逐层浇注法制备的多层梯度结构的Fe3O4@还原氧化石墨烯(rGO)/MWCNT/水性聚氨酯(WPU)复合材料[9]

    Figure  6.  Gradient multilayered structure of Fe3O4@reduced graphene oxide (rGO)/MWCNT/waterborne polyurethane (WPU) composites prepared by layer-by-layer casting method[9]

    图  7  rGO/纳米纤维素(CNF)/rGO复合材料的“三明治”结构和导电性测试示意图[60]

    Figure  7.  Schematic diagram of “sandwich”structure and conductivity test of rGO/cellulose nanofiber (CNF)/rGO composites[60]

    图  8  特殊结构: (a)秸秆衍生的中空多孔碳管[63]; (b)碳化甘蔗的有序多孔结构[64]; (c)碳化废瓦楞纸板的特殊结构[66]

    Figure  8.  Special structures: (a) Straw-derived hollow porous carbon-tube[63]; (b) Ordered porous structure of carbonized sugarcane[64]; (c) Special structures of carbonized waste corrugated boards[66]

  • [1] 王勃, 孙立财. 复杂电磁环境下的机载电子设备安全性设计[J]. 光电技术应用, 2020, 35(2):74-78. doi: 10.3969/j.issn.1673-1255.2020.02.015

    WANG B, SUN L C. Safety design of airborne electronic equipment in complex electromagnetic environments[J]. Electro-Optic Technology Application,2020,35(2):74-78(in Chinese). doi: 10.3969/j.issn.1673-1255.2020.02.015
    [2] SANG G L, XU P, LIU C, et al. Synergetic effect of Ni@MWCNTs and hybrid MWCNTs on electromagnetic interference shielding performances of polyurethane-matrix composite foams[J]. Industrial & Engineering Chemistry Research,2020,59(34):15233-15241.
    [3] 秦文峰, 符佳伟, 王新远, 等. 多壁碳纳米管导电纸/碳纤维复合材料的制备及电磁屏蔽性能研究[J]. 化工新型材料, 2020, 48(9):68-71.

    QIN W F, FU J W, WANG X Y, et al. Preparation and electromagnetic shielding property of MWCNTs conductive paper/CF composite[J]. New Chemical Materials,2020,48(9):68-71(in Chinese).
    [4] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):1-6.

    WANG Y, FAN Z W, ZHAO J. et al. 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2019,36(1):1-6(in Chinese).
    [5] CHEN Y, PÖTSCHKE P, PIONTECK J, et al. Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2020,12(19):22088-22098.
    [6] 刘伟, 王东红, 贾琨, 等. 石墨烯/碳纳米管/纤维素纸复合材料的制备及电磁屏蔽性能研究[J]. 化工新型材料, 2020, 48(1):80-84.

    LIU W, WANG D H, JIA K, et al. Facile preparation of GNS/CNTs/cellulose paper composite for EMI shielding[J]. New Chemical Materials,2020,48(1):80-84(in Chinese).
    [7] ZHOU B, SU M J, YANG D Z, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials & Interfaces,2020,12(36):40859-40869.
    [8] LIANG C B, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding[J]. Science Bulletin,2020,65(8):616-622. doi: 10.1016/j.scib.2020.02.009
    [9] SHENG A, REN W, YANG Y, et al. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105692. doi: 10.1016/j.compositesa.2019.105692
    [10] WU Y, WANG Z Y, LIU X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2017,9(10):9059-9069. doi: 10.1021/acsami.7b01017
    [11] JIA L C, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2019,11(1):1680-1688.
    [12] YANG W, SHAO B, LIU T, et al. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2018,10(9):8245-8257.
    [13] KINN I C, KWON K H, KIM W N. Effects of hybrid fillers on the electrical conductivity, EMI shielding effectiveness, and flame retardancy of PBT and PolyASA composites with carbon fiber and MWCNT[J]. Journal of Applied Polymer Science,2019,136(44):48162.
    [14] YAO B, HONG W, CHEN T, et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness[J]. Advanced Materials,2020,32(14):1907499. doi: 10.1002/adma.201907499
    [15] SUN T, LUO W, LUO Y, et al. Self-reinforced polypropylene/graphene composite with segregated structures to achieve balanced electrical and mechanical properties[J]. Industrial & Engineering Chemistry Research,2020,59(24):11206-11218.
    [16] JAGADESHVARAN P L, NALLABOTHULA H, MENON A V, et al. Nanoinfiltration for enhancing microwave attenuation in polystyrene-nanoparticle composites[J]. ACS Applied Nano Materials,2020,3(2):1872-1880. doi: 10.1021/acsanm.9b02521
    [17] WEI L, ZHANG W, MA J, et al. π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites[J]. Carbon,2019,149:679-692. doi: 10.1016/j.carbon.2019.04.058
    [18] HUANG M, WANG C, QUAN L, et al. CVD growth of porous graphene foam in film form[J]. Matter,2020,3(2):487-497. doi: 10.1016/j.matt.2020.06.012
    [19] SHEN B, LI Y, ZHAI W T, et al. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding[J]. ACS Applied Materials & Interfaces,2016,8(12):8050-8057.
    [20] GAO Y, WANG C Z, LI J, et al. Adjustment of dielectric permittivity and loss of graphene/thermoplastic polyurethane flexible foam: Towards high microwave absorbing performance[J]. Composites Part A: Applied Science and Manufacturing,2019,117:65-75. doi: 10.1016/j.compositesa.2018.10.036
    [21] MA X H, SHEN B, ZHANG L, et al. Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application[J]. Composites Science and Technology,2018,158:86-93. doi: 10.1016/j.compscitech.2018.02.006
    [22] ZHANG H M, ZHANG G C, GAO Q, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal,2020,379:122304.
    [23] YANG J M, LIAO X, WANG G, et al. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding[J]. Chemical Engineering Journal,2020,390:124589. doi: 10.1016/j.cej.2020.124589
    [24] ZHAN Y H, OLIVIERO M, WANG J, et al. Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks[J]. Nanoscale,2019,11(3):1011-1020. doi: 10.1039/C8NR07351A
    [25] 杨晨光, 赵全, 张茂江, 等. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21):3547-3551. doi: 10.11896/cldb.18050235

    YANG C G, ZHAO Q, ZHANG M J, , et al. Improving cellular structure and property of supercritical CO2 foamed of polypropylene via the addition of PTFE micropowder[J]. Materials Reports,2019,33(21):3547-3551(in Chinese). doi: 10.11896/cldb.18050235
    [26] 马晶晶, 熊春晓, 酒永斌, 等. 基于粉末微波发泡法制备超轻质聚酰亚胺泡沫的结构与性能[J]. 高分子材料科学与工程, 2019, 35(6):66-72, 78.

    MA J J, XIONG C X, JIU Y B, et al. Structures and properties of lightweight polyimide foam based on powdered precursor process by aid of microwave[J]. Polymer Materials Science & Engineering,2019,35(6):66-72, 78(in Chinese).
    [27] WANG G, LIAO X, YANG J, et al. Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite[J]. Composites Science and Technology,2019,184:107847. doi: 10.1016/j.compscitech.2019.107847
    [28] LIANG X, ZHAO T, ZHU P, et al. Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films[J]. ACS Applied Materials & Interfaces,2017,9(46):40857-40867.
    [29] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653.
    [30] LIU Y, ZHANG J, GAO H, et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters,2017,17(2):1090-1096. doi: 10.1021/acs.nanolett.6b04613
    [31] KIM D J, CHOI J H, CHOI D K, et al. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires[J]. ACS Applied Materials & Interfaces,2018,10(35):29730-29740.
    [32] SUN X Y, LIU X, SHEN X, et al. Reprint of graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding[J]. Composites Part A: Applied Science and Manufacturing,2017,92:190-197. doi: 10.1016/j.compositesa.2016.10.030
    [33] XU Y, LI Y, HUA W, et al. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property[J]. ACS Applied Materials & Interfaces,2016,8(36):24131-24142.
    [34] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [35] SUN R, ZHANG H B, LIU J, et al. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials,2017,27(45):1702807. doi: 10.1002/adfm.201702807
    [36] FAN X, ZHANG G, LI J, et al. Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite[J]. Composites Part A: Applied Science and Manufacturing,2019,121:64-73. doi: 10.1016/j.compositesa.2019.03.008
    [37] LI J T, ZHANG G C, MA Z L, et al. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams[J]. Composites Science and Technology,2016,129:70-78. doi: 10.1016/j.compscitech.2016.04.003
    [38] WANG G L, WANG L, MARK L, et al. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high performance thermal insulation and electromagnetic interference shielding applications[J]. ACS Applied Materials & Interfaces,2018,10:1195-1203.
    [39] ZHANG K, LI G H, FENG L M, et al. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotubes nanocomposites with electrically conductive segregated networks[J]. Journal of Materials Chemistry C, 2017, 5(36): 9359-9369.
    [40] Feng D, Wang Q Q, Xu D W, et al. Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications[J]. Composites Science and Technology,2019,182:7.
    [41] JIA H, KONG Q Q, LIU Z, et al. 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105712. doi: 10.1016/j.compositesa.2019.105712
    [42] CUI C H, YAN D X, PANG H, et al. Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding[J]. ACS Sustainable Chemistry & Engineering,2016,4(8):4137-4145.
    [43] 邱健, 姜治伟, 邢海平, 等. 具有隔离结构的聚丙烯/碳纳米管复合材料的制备及电磁屏蔽性能[J]. 应用化学, 2020, 37(8):904-911.

    QIU J, JIANG Z W, XING H P, et al. Preparation and electromagnetic shielding properties of polypropylene/carbon nanotubes composites with segregated structure[J]. Chinese Journal of Applied Chemistry,2020,37(8):904-911(in Chinese).
    [44] JIA L C, YAN D X, JIANG X, et al. Synergistic effect of graphite and carbon nanotubes on improved electromagnetic interference shielding performance in segregated composites[J]. Industrial & Engineering Chemistry Research,2018,57(35):11929-11938.
    [45] WU H Y, ZHANG Y P, JIA L C, et al. Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research,2018,57(37):12378-12385.
    [46] 曹轶, 杨家操, 王孝军, 等. 具有隔离结构的聚苯硫醚/石墨烯纳米片复合材料的制备及电磁屏蔽性能研究[J]. 中国塑料, 2019, 33(8):1-5.

    CAO Y, YANG J C, WANG X J, et al. Preparation and electromagnetic interference shielding performance of polyphenylene sulfide/graphene nanoplates composites with segregated structure[J]. China Plastics,2019,33(8):1-5(in Chinese).
    [47] LIU Y F, FENG L M, CHEN Y F, et al. Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: Towards electromagnetic interference shielding and thermistors[J]. Composites Science and Technology,2018,159:152-161. doi: 10.1016/j.compscitech.2018.02.041
    [48] FENG D, LIU P, WANG Q. Selective microwave sintering to prepare multifunctional poly(ether imide) bead foams based on segregated carbon nanotube conductive network[J]. Industrial & Engineering Chemistry Research,2020,59(13):5838-5847.
    [49] XU D, WANG Q, FENG D, et al. Facile fabrication of multifunctional poly(ethylene-co-octene)/carbon nanotube foams based on tunable conductive network[J]. Industrial & Engineering Chemistry Research,2020,59(5):1934-1943.
    [50] TAN Y J, LI J, TANG X H, et al. Effect of phase morphology and distribution of multi-walled carbon nanotubes on microwave shielding of poly(L-lactide)/poly(ε-caprolactone) composites[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106008. doi: 10.1016/j.compositesa.2020.106008
    [51] XU Y, YANG Y Q, YAN D X, et al. Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit[J]. Chemical Engineering Journal,2019,360:1427-1436. doi: 10.1016/j.cej.2018.10.235
    [52] QI Q, MA L, ZHAO B, et al. An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness[J]. ACS Applied Materials & Interfaces,2020,12(32):36568-36577.
    [53] XU Y, YANG Y, YAN D X, et al. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic[J]. ACS Applied Materials & Interfaces,2018,10(22):19143-19152.
    [54] YABLOKOV M Y, SHEVCHENKO V G, MUKHORTOV L A, et al. Electromagnetic interference shielding of carbon nanotube-fluoropolymer elastomer composites with layered structure[J]. Fullerene ence and Technology,2020,28(4):267-271.
    [55] ARIEF I, BHATTACHARJEE Y, PRAKASH O, et al. Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation[J]. Composites Part B: Engineering,2019,177:107283. doi: 10.1016/j.compositesb.2019.107283
    [56] Lipton J, Weng G M, Alhabeb M, et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites[J]. Nanoscale,2019,11(42):20295-20300. doi: 10.1039/C9NR06015D
    [57] SONG W L, GONG C, LI H, et al. Graphene-based sandwich structures for frequency selectable electromagnetic shielding[J]. ACS Applied Materials & Interfaces,2017,9(41):36119-36129.
    [58] FEI Y, LIANG M, CHEN Y, et al. Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4-C for absorption-dominated electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research,2020,59(1):154-165.
    [59] NALLABOTHULA H, BHATTACHARJEE Y, SAMANTARA L, et al. Processing-mediated different states of dispersion of multiwalled carbon nanotubes in PDMS nanocomposites influence EMI shielding performance[J]. ACS Omega,2019,4(1):1781-1790. doi: 10.1021/acsomega.8b02920
    [60] HOU M, XU M, LI B. Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):2983-2990.
    [61] ZHANG Y, CHENG W, TIAN W, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance[J]. ACS Applied Materials & Interfaces,2020,12(5):6371-6382.
    [62] PU J H, ZHA X J, TANG L S, et al. Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics[J]. ACS Applied Materials & Interfaces,2018,10(47):40880-40889.
    [63] MA X H, SHEN B, ZHANG L H, et al. Novel straw-derived carbon materials for electromagnetic interference shielding: A waste-to-wealth and sustainable initiative[J]. ACS Sustainable Chemistry & Engineering,2019,7(10):9663-9670.
    [64] LI Y Q, SAMAD Y A, POLYCHRONOPOULOU K, et al. Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties[J]. ACS Sustainable Chemistry & Engineering,2015,3(7):1419-1427.
    [65] LI S T, LIU D Y, LI W C, et al. Strong and heat-resistant SiC-coated carbonized natural loofah sponge for electromagnetic interference shielding[J]. ACS Sustainable Chemistry & Engineering,2020,8(1):435-444.
    [66] JIA X, SHEN B, CHEN Z, et al. High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields[J]. ACS Sustainable Chemistry & Engineering,2019,7(22):18718-18725.
    [67] LIU Y, YANG M, PANG K, et al. Environmentally stable macroscopic graphene films with specific electrical conductivity exceeding metals[J]. Carbon,2020,156:205-211. doi: 10.1016/j.carbon.2019.09.066
    [68] ZHOU T, XU C, LIU H, et al. Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding[J]. ACS Nano,2020,14(3):3121-3128. doi: 10.1021/acsnano.9b08169
    [69] HU P, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano,2020,14(1):688-697. doi: 10.1021/acsnano.9b07459
    [70] WANG Z, JIAO B, QING Y, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2020,12(2):2826-2834.
    [71] WU L, WANG L, GUO Z, et al. Durable and multifunctional superhydrophobic coatings with excellent joule heating and electromagnetic interference shielding performance for flexible sensing electronics[J]. ACS Applied Materials & Interfaces,2019,11(37):34338-34347.
    [72] JIA L C, YAN D X, LIU X, et al. Highly efficient and reliable transparent electromagnetic interference shielding film[J]. ACS Applied Materials & Interfaces,2018,10(14):11941-11949.
    [73] BHATTACHARJEE Y, CHATTERJEE D, BOSE S. Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2018,10(36):30762-30773.
    [74] ZHANG P, DING X, WANG Y, et al. Low-melting-point alloy continuous network construction in a polymer matrix for thermal conductivity and electromagnetic shielding enhancement[J]. ACS Applied Polymer Materials,2019,1(8):2006-2014. doi: 10.1021/acsapm.9b00258
  • 加载中
图(8)
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  1100
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-11-29
  • 网络出版日期:  2020-12-10
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回