留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响

谢磊 李庆华 徐世烺

谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3094-3108. doi: 10.13801/j.cnki.fhclxb.20201204.001
引用本文: 谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3094-3108. doi: 10.13801/j.cnki.fhclxb.20201204.001
XIE Lei, LI Qinghua, XU Shilang. Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3094-3108. doi: 10.13801/j.cnki.fhclxb.20201204.001
Citation: XIE Lei, LI Qinghua, XU Shilang. Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3094-3108. doi: 10.13801/j.cnki.fhclxb.20201204.001

纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响

doi: 10.13801/j.cnki.fhclxb.20201204.001
基金项目: 国家自然科学基金优秀青年科学基金项目(51622811)
详细信息
    通讯作者:

    李庆华,博士,教授,博士生导师,研究方向为新材料结构  E-mail:liqinghua@zju.edu.cn

  • 中图分类号: TU528.572

Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites

  • 摘要: 为探究超高韧性水泥基复合材料(UHTCC)的动态本构关系及纤维体积掺量对聚乙烯醇纤维增强水泥基复合材料(PVAFRCC)动态力学性能的影响,基于Φ80 mm霍普金森压杆(SHPB)装置分别对不同纤维体积分数(0vol%、0.5vol%、1vol%、1.5vol%、2vol%)的PVAFRCC试件进行冲击压缩试验,得到各类型材料在不同应变率下的应力-应变曲线。结果表明:在约110~270 $ {\rm{s}}^{-1} $的应变率范围内,与纤维掺量0vol%的基体(PVAFRCC-0)相比PVA纤维的掺入对动态强度增强因子($ {\mu }_{\rm{DIF}} $)、冲击韧性和抗破碎能力有明显提高作用,并随纤维掺量的增加而进一步增强;掺2vol%PVA纤维UHTCC(即PVAFRCC-2)试件的$ {\mu }_{\rm{DIF}} $和冲击韧性与基体相比分别提高了约33%~37%和27%~33%,其破碎产物的平均粒径是基体破碎产物的5.9~6.8倍。基于Weibull分布理论提出了适用于掺2vol%PVA纤维UHTCC试件的动态压缩本构模型。

     

  • 图  1  制备好的动态测试试件

    Figure  1.  Prepared specimens for dynamic test

    图  2  霍普金森压杆(SHPB)试验系统

    Figure  2.  Split Hopkinson pressure bar (SHPB) test system

    图  3  典型的PVAFRCC动态压缩波形图

    Figure  3.  Typical dynamic compressive waveform of PVAFRCC

    图  4  同一组冲击气压下PVAFRCC的应力-应变曲线

    Figure  4.  Stress-strain curves of PVAFRCC under the same impact pressure

    图  5  相同冲击气压下PVAFRCC的破坏形态

    Figure  5.  Failure patterns of PVAFRCC under similar impact pressures

    图  6  PVAFRCC破碎产物的量化分析

    Figure  6.  Quantitative analysis of fragments of PVAFRCC

    图  7  PVAFRCC的试验曲线与模型曲线

    Figure  7.  Experimental and model curves of PVAFRCC

    图  8  PVAFRCC的动态强度因子($ {\mu }_{\rm{DIF}} $)与应变率的关系

    Figure  8.  Relationship between dynamic increase factor ($ {\mu }_{\rm{DIF}} $) and strain rate of PVAFRCC

    图  9  PVAFRCC的动态强度增强因子与现有经验公式的对比

    Figure  9.  Comparison between dynamic increase factor of PVAFRCC and existing empirical formula

    图  10  PVAFRCC的韧性与应变率的关系

    Figure  10.  Relationship between toughness and strain rate of PVAFRCC

    图  11  PVAFRCC的峰值应变韧性率

    Figure  11.  Peak strain toughness ratio of PVAFRCC

    图  12  PVAFRCC的相对韧性

    Figure  12.  Relative toughness of PVAFRCC

    图  13  PVAFRCC的冲击韧性-纤维掺量-应变率三维关系图

    Figure  13.  3D relationship between impact toughness-fiber volume fraction-strain rates of PVAFRCC

    图  14  PVAFRCC的动态弹性模量-纤维掺量-应变率三维关系图

    Figure  14.  3D relationship between dynamic elastic modulus-fiber volume fraction-strain rates of PVAFRCC

    图  15  PVAFRCC的本构参数-纤维掺量-应变率三维关系图

    Figure  15.  3D relationship between constitutive model parameters-fiber volume fraction-strain rates of PVAFRCC

    表  1  聚乙烯醇(PVA)纤维的基本参数

    Table  1.   Physical properties of polyvinyl alcohol (PVA) fiber

    Diameter/μmLength/mmTensile strength/MPaElastic modulus/GPaUltimate strain/%Density/(kg·m−3)
    40 12 1600 40 6 1300
    下载: 导出CSV

    表  2  不同纤维掺量PVA纤维增强水泥基复合材料(PVAFRCC)的配合比

    Table  2.   Mix proportions of PVA reinforced cementitious composites (PVAFRCC) with different PVA fiber volume fractions

    TypeBinder/(kg·m−3)mW/mBSand/(kg·m−3)Superplasticizer/(kg·m−3)Fiber volume fraction/vol%
    PVAFRCC-0 1410 0.31 320 2 0
    PVAFRCC-0.5 1410 0.31 320 2 0.5
    PVAFRCC-1 1410 0.31 320 2 1.0
    PVAFRCC-1.5 1410 0.31 320 2 1.5
    PVAFRCC-2 1410 0.31 320 2 2.0
    Notes: Binder includes P.O. 52.5 cement, fly ash; mW/ mB—Mass ratio of water to binder.
    下载: 导出CSV

    表  3  PVAFRCC准静态抗压强度

    Table  3.   Quasi-static compression strength of PVAFRCC

    TypeTest numberCompressive strength$ {f}_{\rm{s}} $/MPaStandard deviation/MPa
    PVAFRCC-0 3 55.90 1.14
    PVAFRCC-0.5 3 48.49 0.91
    PVAFRCC-1 3 48.83 0.64
    PVAFRCC-1.5 3 50.33 2.22
    PVAFRCC-2 3 50.89 1.35
    下载: 导出CSV
  • [1] SU Y, LI J, WU C Q, et al. Effects of steel fibres on dynamic strength of UHPC[J]. Construction and Building Materials,2016,114:708-718. doi: 10.1016/j.conbuildmat.2016.04.007
    [2] LI V C, WANG S X, WU C X. Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal,2001,98(6):483-492.
    [3] 徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9):1055-1063. doi: 10.3321/j.issn:0559-9350.2009.09.005

    XU Shilang, CAI Xiangrong. Basic mechanical properties of ultra-high toughness fiber reinforced cement-based composites[J]. Journal of Hydraulic Engineering,2009,40(9):1055-1063(in Chinese). doi: 10.3321/j.issn:0559-9350.2009.09.005
    [4] 王玉清, 刘潇, 高元明, 等. 不同纤维掺量下聚乙烯醇纤维增强工程水泥复合材料梁剪切韧性试验[J]. 复合材料学报, 2019, 36(8):1968-1976.

    WANG Yuqing, LIU Xiao, GAO Yuanming, et al. Shear toughness test of polyvinyl alcohol fiber reinforced engineering cement composite beams with different fiber contents[J]. Acta Materiae Compositae sinica,2019,36(8):1968-1976(in Chinese).
    [5] 张聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):661-668.

    ZHANG Cong, CAO Mingli. Mechanical properties test of multi-scale fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2014,31(3):661-668(in Chinese).
    [6] LIN J X, SONG Y, XIE Z H, et al. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers[J]. Journal of Building Engineering,2020,29:101097. doi: 10.1016/j.jobe.2019.101097
    [7] 李安令, 张朝辉, 郭帅成, 等. 聚乙烯醇纤维增强水泥复合材料板的冲切性能[J]. 复合材料学报, 2021, 38(3):902-910. doi: 10.13801/j.cnki.fhclxb.20200616.001

    LI Anling, ZHANG Zhaohui, GUO Shuaicheng, et al. Punching shear properties of polyvinyl alcohol fiber reinforced cement composite plates[J]. Acta Materiae Compositae Sinica,2021,38(3):902-910(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200616.001
    [8] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering,2005,17(2):143-152. doi: 10.1061/(ASCE)0899-1561(2005)17:2(143)
    [9] 徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8):123-133.

    XU Shilang, LI Rui, LI Qinghua, et al. Numerical simulation of contact explosion of functionally graded plates of ultra-high toughness cementitious composites[J]. Engineering Mechanics,2020,37(8):123-133(in Chinese).
    [10] KAI M F, XIAO Y, ShUAI X L, et al. Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering,2017,29(4):4016254. doi: 10.1061/(ASCE)MT.1943-5533.0001781
    [11] CHEN Z T, YANG Y Z, YAO Y. Quasi-static and dynamic compressive mechanical properties of engineered ce-mentitious composite incorporating ground granulated blast furnace slag[J]. Materials and Design,2013,44:500-508. doi: 10.1016/j.matdes.2012.08.037
    [12] NOUSHINI A, SAMALI B, VESSALAS K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material proper-ties of fibre reinforced concrete[J]. Construction and Building Materials,2013,49:374-383. doi: 10.1016/j.conbuildmat.2013.08.035
    [13] 李艳, 张文彬, 刘泽军. PVA-ECC动态压缩性能试验研究[J]. 建筑材料学报, 2019:1-9. doi: 10.3969/j.issn.1007-9629.2019.01.001

    LI Yan, ZHANG Wenbin, LIU Zejun. Experimental study on dynamic compression properties of PVA-ECC[J]. Journal of Building Materials,2019:1-9(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.01.001
    [14] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究[D]. 杭州: 浙江大学, 2018.

    ZHAO Xin. Experimental and theoretical study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [15] LI Q H, ZHAO X, XU S L, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials,2016,125:490-500. doi: 10.1016/j.conbuildmat.2016.08.066
    [16] 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11):79-85. doi: 10.3321/j.issn:1000-131X.2009.11.011

    XU Shilang, CAI Xiangrong, ZHANG Yinghua. Measurement and analysis of uniaxial compressive stress-strain curve of ultra-high toughness cement-based composites[J]. Journal of Civil Engineering,2009,42(11):79-85(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.11.011
    [17] 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7):1754-1762.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tensile constitutive relationship of hybrid fiber reinforced strain-hardening cement-based composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1754-1762(in Chinese).
    [18] SUROVEK A E, WHITE D W, LEON R T. Direct anal ysis for design evaluation of partially restrained steel framing systems[J]. Journal of Structural Engineering,2005,131(9):1376-1389. doi: 10.1061/(ASCE)0733-9445(2005)131:9(1376)
    [19] KONG X Z, FANG Q, LI Q M, et al. Modified K& C model for cratering and scabbing of concrete slabs under projectile impact[J]. International Journal of Impact Engineering,2017,108:217-228. doi: 10.1016/j.ijimpeng.2017.02.016
    [20] TU Z G, LU Y. Evaluation of typical concrete mate rial models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering,2009,36(1):132-146. doi: 10.1016/j.ijimpeng.2007.12.010
    [21] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9):50-59.

    XU Shilang, CHEN Chao, LI Qinghua, et al. Numerical simulation of dynamic compression mechanical properties of ultra-high toughness cement-based composites[J]. Engineering Mechanics,2019,36(9):50-59(in Chinese).
    [22] 张社荣, 宋冉, 王超, 等. 碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J]. 中南大学学报(自然科学版), 2019, 50(1):130-138.

    ZHANG Sherong, SONG Ran, WANG Chao, et al. Dynamic mechanical properties analysis and damage evolution constitutive model establishment of roller compacted concrete[J]. Journal of Central South University (Natural Science Edition),2019,50(1):130-138(in Chinese).
    [23] BERTHOLF L D, KARNES C H. Two-dimensional analysis of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids,1975,23(1):1-19. doi: 10.1016/0022-5096(75)90008-3
    [24] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(1):205-213.

    WANG Yuqing, SUN Liang, LIU Shuguang, et al. Creep test of polyvinyl alcohol fiber/cement composites with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(1):205-213(in Chinese).
    [25] MOHAMMED B S, KHED V C, LIEW M S. Optimization of hybrid fibres in engineered cementitious composites[J]. Construction and Building Materials,2018,190:24-37. doi: 10.1016/j.conbuildmat.2018.08.188
    [26] 祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18):3266-3270. doi: 10.11896/j.issn.1005-023X.2018.18.030

    ZHU Heyi, ZHANG Shaofeng. Effect of PVA fiber volume fraction on mechanical properties of PVA-ECC[J]. Materials Guide,2018,32(18):3266-3270(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.18.030
    [27] 王衍. 高韧性纤维增强水泥基复合材料物理力学性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Yan. Experimental study on physical and mechanical properties of high toughness fiber reinforced cement-based composites[D]. Harbin: Harbin Institute of technology, 2016(in Chinese).
    [28] LIEW M S, MUHAMMAD A, KAMALUDDEEN U D, et al. Investigation of fibers reinforced engineered cementitious composites properties using quartz powder[J]. Materials,2020,13(11):2428.
    [29] MERCHANT B, GELOT A. Evaluation of engineering cementitious composites (ECC) with different percentage of fibers[J]. International Journal of Engineering Research and Technology,2015,4:40-43.
    [30] 黄雄, 谭焕成, 刘璐璐, 等. 编织角和承载方向对三维四向编织复合材料动态压缩性能的影响[J]. 复合材料学报, 2018, 35(4):823-833.

    HUNAG Xiong, TAN Huancheng, LIU Lulu, et al. Effects of braiding angle and loading direction on dynamic compression properties of 3D-4D braided composites[J]. Acta Materiae Compositae Sinica,2018,35(4):823-833(in Chinese).
    [31] ZHANG S R, WANG X H, WANG C, et al. Compressive behavior and constitutive model for roller compacted concrete under impact loading: Considering vertical stratification[J]. Construction and Building Materials,2017,151:428-440. doi: 10.1016/j.conbuildmat.2017.06.113
    [32] HAO Y F, HAO H. Dynamic compressive behavior of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests[J]. Construction and Building Materials,2013,48:521-532. doi: 10.1016/j.conbuildmat.2013.07.022
    [33] 王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响[J]. 实验力学, 2002(1):23-27. doi: 10.3969/j.issn.1001-4888.2002.01.004

    WANG Daorong, HU Shisheng. The influence of aggregate on the impact compression behavior of concrete materials[J]. Experimental Mechanics,2002(1):23-27(in Chinese). doi: 10.3969/j.issn.1001-4888.2002.01.004
    [34] CHEN X D, WU S, ZHOU J K. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete[J]. Construction and Building Materials,2013,47:419-430. doi: 10.1016/j.conbuildmat.2013.05.063
    [35] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkin-son pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [36] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization[J]. International Journal of Impact Engineering,2001,25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3
    [37] TEDESCO J W, ROSS C A. Strain-rate-dependent constitutive equations for concrete[J]. Journal of Pressure Vessel Technology,1998,120(4):398-405. doi: 10.1115/1.2842350
    [38] Comité Euro-International du Béton. Design code: CEB—FIP Model Code 1990[S]. Luxembourg: Comité Euro-international du Béton–Federation Internationale de la Précontrainte, 1990.
    [39] HOU X M, CAO S J, ZHENG W Z, et al. Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Engineering Structures,2018,169:119-130. doi: 10.1016/j.engstruct.2018.05.036
    [40] SUN X W, ZHAO K, LI Y C, et al. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete[J]. Construction and Building Materials,2018,158:657-669. doi: 10.1016/j.conbuildmat.2017.09.093
    [41] 王立闻, 庞宝君, 陈勇, 等. 高温处理后活性粉末混凝土动力学行为及本构模型研究[J]. 高压物理学报, 2012, 26(4):361-368.

    WANG Liwen, PANG Baojun, CHEN Yong, et al. Study on dynamic behavior and constitutive model of reactive powder concrete after high temperature treatment[J]. Journal of High Pressure Physics,2012,26(4):361-368(in Chinese).
    [42] WANG Z L, LIU Y S, SHEN R F. Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials,2008,22(5):811-819. doi: 10.1016/j.conbuildmat.2007.01.005
    [43] HOU X M, CAO S J, RONG Q, et al. Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete[J]. Construction and Building Materials,2018,170:570-581. doi: 10.1016/j.conbuildmat.2018.03.101
    [44] ZHANG Hua, LIU Yang, SUN Hao, et al. Transient dynamic be-havior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials,2016,111:30-42. doi: 10.1016/j.conbuildmat.2016.02.049
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  507
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-11-22
  • 网络出版日期:  2020-12-04
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回