留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/环氧树脂预浸带铺放应力场及制品微观结构的模拟与实验

张宏基 葛媛媛 万增利 拓耀飞 孙志勇 唐虹 史耀耀

张宏基, 葛媛媛, 万增利, 等. 碳纤维/环氧树脂预浸带铺放应力场及制品微观结构的模拟与实验[J]. 复合材料学报, 2021, 38(9): 2882-2893. doi: 10.13801/j.cnki.fhclxb.20201202.001
引用本文: 张宏基, 葛媛媛, 万增利, 等. 碳纤维/环氧树脂预浸带铺放应力场及制品微观结构的模拟与实验[J]. 复合材料学报, 2021, 38(9): 2882-2893. doi: 10.13801/j.cnki.fhclxb.20201202.001
ZHANG Hongji, GE Yuanyuan, WAN Zengli, et al. Simulation and experiment study of stress field and microstructure of carbon fiber/epoxy resin prepreg laying products[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2882-2893. doi: 10.13801/j.cnki.fhclxb.20201202.001
Citation: ZHANG Hongji, GE Yuanyuan, WAN Zengli, et al. Simulation and experiment study of stress field and microstructure of carbon fiber/epoxy resin prepreg laying products[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2882-2893. doi: 10.13801/j.cnki.fhclxb.20201202.001

碳纤维/环氧树脂预浸带铺放应力场及制品微观结构的模拟与实验

doi: 10.13801/j.cnki.fhclxb.20201202.001
基金项目: 国家自然科学基金 (51475377);陕西省科技计划项目(2019GY-205);榆林学院高层次人才科研启动基金(20GK07);榆林市科技计划项目(2019-86-5)
详细信息
    通讯作者:

    张宏基,博士,副教授,研究方向为复合材料成型工艺及性能控制  E-mail:sanxing258@163.com

  • 中图分类号: TB332

Simulation and experiment study of stress field and microstructure of carbon fiber/epoxy resin prepreg laying products

  • 摘要: 碳纤维/环氧树脂预浸带复合材料在铺放成型时,由于树脂基体与碳纤维之间的热膨胀系数存在差异以及成型时热-力参数作用下由于纤维的变形而导致纤维与基体接触处产生应力集中等原因,在制品材料中会产生热残余应力。针对碳纤维/环氧树脂预浸带复合材料的实际结构特点,利用ABAQUS有限元软件建立含有界面的碳纤维/环氧树脂预浸带复合材料的细观代表性体积单元(Representative volume element, RVE)有限元模型,采用实验研究和有限元仿真分析的方法,研究在温度-压力参数作用下预浸带铺放制品残余应力的分布规律及影响机理。首先,建立预浸带铺放时的温度和压力模型,研究不同温度和压力参数条件下碳纤维/环氧树脂预浸带铺放制品残余应力的分布情况。其次,采用耦合降温法模拟碳纤维/环氧树脂预浸带残余应力随纤维体积含量、铺放压力以及铺放温度的变化规律,并采用扫描电镜对不同工艺参数条件下预浸带铺放制品的微观结构进行分析。通过对模拟结果进行分析比较得到各因素对制品残余应力的基本影响规律;最后进行不同温度和压力等铺放参数对预浸带铺放成型时残余应力影响的实验测试研究。

     

  • 图  1  碳纤维/环氧树脂预浸带铺放有限元模型

    Figure  1.  Finite element model of carbon fiber/epoxy resin prepreg laying

    图  2  纤维体积含量对碳纤维/环氧树脂预浸带铺放制品各组分残余应力的影响

    Figure  2.  Effect of fiber volume content on residual stress of components of carbon fiber/epoxy resin prepreg laying products

    图  3  温度对碳纤维/环氧树脂预浸带铺放制品各组分残余应力的影响

    Figure  3.  Effect of temperature on residual stress of components of carbon fiber/epoxy resin prepreg laying products

    图  4  与铺放起始位置不同距离下温度对碳纤维/环氧树脂预浸带铺放时残余应力的影响

    Figure  4.  Effect of temperature on residual stress of carbon fiber/epoxy resin prepreg laying under different distance from the start laying point

    图  5  温度作用下碳纤维/环氧树脂预浸带y方向残余应力分布云图

    Figure  5.  Residual stress distribution in y direction of carbon fiber/epoxy resin prepreg under the action of temperature

    图  6  温度作用下碳纤维/环氧树脂预浸带x-z方向应力分布云图

    Figure  6.  Residual stress distribution in x-z direction of carbon fiber/epoxy resin prepreg under the action of temperature

    图  7  碳纤维/环氧树脂预浸带在压力作用下残余应力分布规律

    Figure  7.  Residual stress distribution of carbon fiber/epoxy resin prepreg under pressure action

    图  8  压力作用下碳纤维/环氧树脂预浸带y方向残余应力分布云图

    Figure  8.  Residual stress distribution in y direction of carbon fiber/epoxy resin prepreg under the action of pressure

    图  9  压力作用下碳纤维/环氧树脂预浸带x-z方向应力分布云图

    Figure  9.  Residual stress distribution in x-z direction of carbon fiber/epoxy resin prepreg under the action of pressure

    图  10  预浸带自动铺放设备

    Figure  10.  Automatic laying equipment of prepreg

    图  11  铺放样件

    Figure  11.  Samples fabricated by fiber placement

    图  12  残余应力测试系统

    Figure  12.  Ressdual stresses measurement system

    图  13  80℃时不同压力参数条件下碳纤维/环氧树脂预浸带铺放制品的微观结构

    Figure  13.  Microstructures of carbon fiber/epoxy resin prepreg products of 80℃ at different pressure parameters

    图  14  150 N时不同温度参数条件下碳纤维/环氧树脂预浸带铺放制品的微观结构

    Figure  14.  Microstructures of carbon fiber/epoxy resin prepreg products of 150 N at different temperature parameters

    图  15  不同温度时碳纤维/环氧树脂预浸带铺放制品残余应力测试结果

    Figure  15.  Test results of the residual stress of carbon fiber/epoxy resin prepreg laying products at different temperatures

    图  16  不同压力时碳纤维/环氧树脂预浸带铺放制品残余应力测试结果

    Figure  16.  Test results of the residual stress of carbon fiber/epoxy resin prepreg laying products under different pressures

    图  17  不同纤维体积含量时碳纤维/环氧树脂预浸带铺放制品残余应力测试结果

    Figure  17.  Test results of the residual stress of carbon fiber/epoxy resin prepreg laying products with different fiber volume contents

    表  1  碳纤维/环氧树脂预浸带的性能参数[25]

    Table  1.   Performance parameters of carbon fiber/epoxy resin prepreg[25]

    Density ρ/(g·cm−3)Poisson′s ratioModulus E/GPa
    Fiber 1.76 0.3 248
    Matrix 1.68 0.38 2.35
    Roll 7.93 0.3 206
    Thermal conductivity
    coefficient/(W·(m2·℃)−1)
    Thermal expansion
    coefficient a/(10−6 −1)
    Fiber 0.43 −0.74
    Matrix 0.18 63.90
    下载: 导出CSV

    表  2  碳纤维/环氧树脂界面层参数[27]

    Table  2.   Parameters of interface layer between carbon fiber and epoxy resin[27]

    Parameter of interface layerValue
    Interfacial thickness/μm 0.2
    Volume fraction/% 3.45
    Elastic modulus/GPa 8.3
    Poisson’s ratio 0.176
    Coefficient of thermal expansion/(10−6·℃−1) 28.34
    Density/(g·cm−3) 1.26
    下载: 导出CSV
  • [1] WANG Jianhua, QIAN Linfang, YUAN Renshu. Thermal residual stresses in composite material barrel[J]. Journal of Ballistics,2007,19:82-85.
    [2] 洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12):2822-2832.

    HONG Qi, SHI Yaoyao, LU Danni, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832(in Chinese).
    [3] 康峻铭, 孙亮亮, 王继辉. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG Junming, SUN Liangliang, WANG Jihui, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [4] MALIGNO A R, WARRIOR N A, LONG A C. Effects of interphase material properties in unidirectional fiber reinforced composites[J]. Composite Science and Technology,2010,70:36-44. doi: 10.1016/j.compscitech.2009.09.003
    [5] PEREZ E, MORENO M, VALADEZ A, et al. Effect of the interphase microstructure on the behavior of carbon fiber/epoxy resin model composite in a thermal environment[J]. Journal of Materials Science,2011,46(11):4026-4033. doi: 10.1007/s10853-011-5331-0
    [6] SHOKRIEH M M, SAFARABADI M. Three-dimensional analysis of micro-residual stresses in fibrous composites based on the energy method: A study including interphase effects[J]. Journal of Composite Materials,2012,46(6):727-735. doi: 10.1177/0021998311410478
    [7] GRACIANI E, VARAN J, MANTIC V, et al. Evaluation of interfacial fracture toughness and friction coefficient in the single fiber fragmentation test[J]. Procedia Engineering,2011,10:2478-2483. doi: 10.1016/j.proeng.2011.04.408
    [8] CORREA E, MANTIC V, PARLS F. Effect of thermal residual stresses on matrix failure under transverse tension at micromechanical level: A numerical and experimental analysis[J]. Composites Science and Technology,2011,71:622-629. doi: 10.1016/j.compscitech.2010.12.027
    [9] 惠新育, 许英杰, 张卫红, 等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10):2380-2388.

    HUI Xinyu, XU Yingjie, ZHANG Weihong, et al. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2380-2388(in Chinese).
    [10] BENEDIKT F, ANDREW H, LUISE K. Multi-objective CFRP patch optimization with consideration of manufacturing constraints and integrated warpage simulation[J]. Composite Structures,2019,221:1-10. doi: 10.1016/j.compstruc.2019.05.008
    [11] 冀运东, 郑凯东, 曹东风. 基于内聚力行为和扩展有限元的砂/树脂复合材料拉伸失效行为的数值计算[J]. 复合材料学报, 2019, 36(12):2851-2859.

    JI Yundong, ZHENG Kaidong, CAO Dongfeng, et al. Numerical calculation of tensile failure behavior of sand/resin composite model based on extended finite element and cohesive behavior[J]. Acta Materiae Compositae Sinica,2019,36(12):2851-2859(in Chinese).
    [12] 顾建平, 方常青, 孙慧玉, 等. 碳纤维增强形状记忆聚合物复合材料的热-力学行为建模与影响因素碳纤维增强形状记忆聚合物复合材料的热-力学行为建模与影响因素[J]. 复合材料学报, 2019, 36(6):1438-1446.

    GU Jianping, FANG Changqing, SUN Huiyu, et al. Modeling and influence factors of the thermo-mechanical behaviors of the carbon fiber reinforced shape memory polymer composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1438-1446(in Chinese).
    [13] WU Y, XING Y, LIU B. Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method[J]. Composite Structures,2018,205:11-25. doi: 10.1016/j.compstruct.2018.08.095
    [14] CIVALEK O. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method[J]. Composite Part B: Engineering,2017,111:45-59. doi: 10.1016/j.compositesb.2016.11.030
    [15] SONMEZ F O, AKBULUT M. Process optimization of tape placement for thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2007,38(9):2013-2023. doi: 10.1016/j.compositesa.2007.05.003
    [16] CHINESTA C, FRACISCO O, DEDIEU M, et al. On the prediction of residual stresses in automated tape placement[J]. International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM,2017,10(4):633-640.
    [17] FAZIL Sonmez, HAHN Thomas, MUSTAFA Akbulut. Analysis of process-induced residual stresses in tape placement[J]. Journal of Thermoplastic Composite Materials,2002,15(3):525.
    [18] PATICIA P, HARALD E N. Residual stresses in thermoplastic-composites-a study of the literature. Part III: Effects of thermal residual stresses[J]. Composites Part A: Applied Science and Manufacturing,2007,38(6):1581-1596. doi: 10.1016/j.compositesa.2006.12.005
    [19] 杜宇, 李志猛, 杨涛, 等. 预浸带铺放成型复合材料构件应力场研究[J]. 固体火箭技术, 2015, 38(05):116-120.

    DU Yu, LI Zhimeng, YANG Tao, et, al. Stress field on prepreg lay-up modeling for component[J]. Journal of Solid Rocket Technology,2015,38(05):116-120(in Chinese).
    [20] MEIJIER G, ELLYIN F, XIA Z. Aspect of residual thermal stress/strain in particle reinforced metal matrix composites[J]. Composites,2000,8(46):29-37.
    [21] Z. 塔德莫尔, C. G. 高戈斯. 聚合物加工原理[M]. 北京: 化学工业出版社, 2008.

    ZEHEV Tadmor, COSTAS Gogos. Principles of Polymer Processing[M]. Beijing: Chemical Industry Press, 2008 (in Chinese).
    [22] 张建宝, 文立伟, 肖军, 等. 自动铺带成形压力控制技术[J]. 航空学报, 2009(10):1973-1977. doi: 10.3321/j.issn:1000-6893.2009.10.030

    ZHANG Jianbao, WEN Liwei, XIAO Jun, et al. Processing pressure control technique for automatic tape laying[J]. Acta Aeronautica & Astronautica Sinica,2009(10):1973-1977(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.10.030
    [23] ZHAO Q, HOA S V, GAO Z J. Thermal stresses in rings of thermoplastic composites made by automated fiber placement process[J]. Science Engineering of Composite Materials,2011,18(3):35-49.
    [24] SONMEZ F O, AKBULUT M. Process optimization of tape placement for thermoplastic composites[J]. Composites,2007,38(4):2013-2023.
    [25] QU P, GUAN X, JIA Y, et al. Effective elastic properties and stress distribution of 2D biaxial nonorthogonally braided composites[J]. Journal of Composite Materials,2012,46(8):997-1008. doi: 10.1177/0021998311413684
    [26] LEI Yang, YING Yan, JIAN Ma. Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites[J]. Computational Materials Science,2013,68(3):255-262.
    [27] 李起阳. 考虑尺寸效应和温度影响的纤维增强树脂基复合材料的界面剪切行为研究[D]. 杭州: 浙江大学, 2019.

    LI Qiyang. Size and temperature effects on interfacial shearing behavior of fiber reinforced polymer matrix composites[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
    [28] 中国国家标准化管理委员会. 无损检测测量残余应力的中子衍射方法: GB/T 26140—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Non-destructive testing-Standards test method for determining residual stresses by neutron diffraction: GB/T 260140—2010[S]. Beijing: China Standards Press, 2010 (in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  384
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2020-11-16
  • 录用日期:  2020-11-21
  • 网络出版日期:  2020-12-02
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回