留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

编织碳纤维/环氧树脂复合材料热扩散仿真

吴恩启 张泽祺 孙海力 吴天华

吴恩启, 张泽祺, 孙海力, 等. 编织碳纤维/环氧树脂复合材料热扩散仿真[J]. 复合材料学报, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002
引用本文: 吴恩启, 张泽祺, 孙海力, 等. 编织碳纤维/环氧树脂复合材料热扩散仿真[J]. 复合材料学报, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002
WU Enqi, ZHANG Zeqi, SUN Haili, et al. Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002
Citation: WU Enqi, ZHANG Zeqi, SUN Haili, et al. Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002

编织碳纤维/环氧树脂复合材料热扩散仿真

doi: 10.13801/j.cnki.fhclxb.20201201.002
基金项目: 国家自然科学基金(50875174)
详细信息
    通讯作者:

    吴恩启,博士,副教授,硕士生导师,研究方向为复合材料无损检测  E-mail:weqsd@163.com

  • 中图分类号: TB332

Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite

  • 摘要: 对编织碳纤维/环氧树脂(CF/EP)复合材料的三维热扩散性能进行有限元仿真研究。通过TexGen软件创建20层编织CF/EP复合材料三维仿真模型,计算了不同孔隙率样品的有效体积比热和热导率来设置材料属性,并使用幅值曲线模拟周期性点光源进行仿真。首先以孔隙率为0%的样品为例,采用非线性拟合求解热扩散系数,选出最优的调制频率范围为0.1~2 Hz。在此基础上研究了孔隙率对复合材料热扩散性能的影响。结果表明,编织CF/EP复合材料在平面内的热扩散系数随着孔隙率的增大而减小,孔隙率小于1.55%时,孔隙率每增加1%,热扩散系数下降5.4%。孔隙率大于1.55%时,下降速度变慢,仅为2.4%。在平面内沿着经纱和纬纱方向的热扩散较快,经(纬)纱45°方向的热扩散较慢,而在垂直方向上,由于点光源的穿透性使法向的热扩散最快,体现了热扩散的各向异性。

     

  • 图  1  编织CF/EP复合材料结构仿真模型

    Figure  1.  Simulation model of woven carbon fiber/epoxy resin composites

    图  2  编织CF/EP复合材料单层纱线的数量、间距、宽度及排布方式

    Figure  2.  Number, spacing, width and arrangement of single layer yarns of woven carbon fiber/epoxy resin composites

    图  3  编织CF/EP复合材料有限元仿真模型与周期性点光源加载示意图

    Figure  3.  Finite element model of woven CF/EP composites and the diagram of laser-spot periodic heating method

    图  4  编织CF/EP复合材料平面内和垂直方向上热扩散角度坐标

    Figure  4.  Coordinates of heat diffusion angles in the plane and the vertical direction of woven CF/EP composites

    图  5  编织CF/EP复合材料样品S1的三维温度分布云图

    Figure  5.  Three-dimensional temperature distribution cloud diagram of woven CF/EF composites for S1 sample

    图  6  编织CF/EP复合材料0°方向上3个节点温度值线性化后的拟合效果图

    Figure  6.  Fitting graph of the temperature distribution values of 3 nodes in the 0° direction after linearization of woven CF/EP composites

    图  7  编织CF/EP复合材料样品1的热扩散系数-频率曲线

    Figure  7.  Thermal diffusivity-frequency curves of woven CF/EF composites for sample NO.1

    图  8  不同厚度编织CF/EP复合材料的热扩散系数-孔隙率曲线

    Figure  8.  Thermal diffusivity-frequency curves for woven CF/EP composites with different thicknesses

    图  9  不同厚度编织CF/EP复合材料的热导率-孔隙率曲线

    Figure  9.  Thermal conductivity-frequency curves for woven CF/EP composites with different thicknesses

    图  10  编织CF/EP复合材料平面内不同角度热扩散系数和热导率极坐标图

    Figure  10.  Polar coordinate diagram of in-plane thermal diffusivity and thermal conductivity with different angles for woven CF/EP composites

    图  11  编织CF/EP复合材料垂直方向上不同角度热扩散系数和热导率极坐标图

    Figure  11.  Polar coordinate diagram of thermal diffusivity and thermal conductivity in the vertical direction with different angles for woven CF/EP composites

    表  1  编织碳纤维/环氧树脂(CF/EP)复合材料样品的孔隙率与厚度

    Table  1.   Porosity and thickness of woven carbon fiber/epoxy resin (CF/EP) composites

    Sample123456
    $\varphi $/% 0 0.32 0.45 1.55 3.64 5.3
    d/mm 4.25 4.32 4.36 4.42 4.56 4.66
    Notes: $\varphi $—Porosity; d—Thickness.
    下载: 导出CSV

    表  2  编织CF/EP复合材料组成成分的热性能参数

    Table  2.   Thermal property parameters of woven CF/EP composites

    PropertyCarbon fiberEpoxy resinPore
    S/(J·m−3·K−1) 1.63×106 2.21×106 1.21×103
    $\kappa $/(W(m·K)−1) 8.4 0.2 0.06
    Notes: S—specific heat;$\kappa $—Thermal conductivity.
    下载: 导出CSV

    表  3  编织CF/EP复合材料不同孔隙率样品的有效体积比热与热导率

    Table  3.   Effective volume specific heat and thermal conductivity of woven CF/EP composites with different porosities

    Sample123456
    SM/(106J·m−3·K−1) 2.210 2.198 2.193 2.154 2.067 1.996
    ${\kappa _{\rm{M}}}$/(W(m·K)−1) 0.200 0.199 0.198 0.194 0.186 0.180
    Seff/(106J·m−3·K−1) 1.862 1.859 1.857 1.846 1.82 1.796
    Notes: SM—Effective volume specific heat of matrix with porosity; ${\kappa _{\rm{M}}}$—Thermal conductivity of matrix with porosity; Seff—Effective volume specific heat of woven CF/EP composite.
    下载: 导出CSV
  • [1] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(19):52-63(in Chinese).
    [2] 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(1):107-111.

    XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiea Compositae Sinica,2013,30(1):107-111(in Chinese).
    [3] 龙巍, 郑学林, 臧建彬. 基于碳纤维复合材料热性能的研究进展综述[J]. 应用化工, 2019, 48(9):2251-2255. doi: 10.3969/j.issn.1671-3206.2019.09.052

    LONG W, ZHENG X L, ZANG J B. Review of research of progress based on thermal properties of carbon fiber composites[J]. Applied Chemical Industry,2019,48(9):2251-2255(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.09.052
    [4] LI H Z, LI S, WANG Y C. Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales[J]. Journal of Materials Research, 2011, 26 (3): 384-394.
    [5] ZHANG L L, LI H J, LI K Z, et al. Double-layer TC4/Sr substituted hydroxyapatite bioactive coating for carbon composites[J]. Ceramics International, 2015, 41: 427-435.
    [6] 姜黎黎, 吴日娜, 徐美玲, 等. 三维四向编织碳纤维/环氧树脂复合材料在热环境中的拉压力学性能实验[J]. 复合材料学报, 2020, 37(2):309-317.

    JIANG L L, WU R N, XU M L, et al. Experimental investigation on the tensile and compressive properties of 3D 4-directional braided carbon fiber/epoxy resin composites in thermal environment[J]. Acta Materiea Compositae Sinica,2020,37(2):309-317(in Chinese).
    [7] 周雅斌, 曾捷, 张倩昀, 等. 基于光纤传感水热平衡法测量碳纤维圆筒结构的热扩散系数[J]. 中国激光, 2013, 11:200-205.

    ZHOU Y B, ZENG J, ZHANG Q Y, et al. Measurement of the thermal diffusivity of carbon composite by water-heat balance method[J]. Chinese Journal of Lasers,2013,11:200-205(in Chinese).
    [8] WOJCIECH P. A, SEBASTIAN P, ZIEMOWIT O. Determination of thermal conductivity of CFRP composite materials using unconventional laser flash technique[J]. Measurement,2018,124:147-155. doi: 10.1016/j.measurement.2018.04.022
    [9] RYOHEI F, HOSEI N. Novel fiber orientation evaluation method for CFRP/CFRTP based on measurement of anisotropic in-plane thermal diffusivity distribution[J]. Composites Science and Technology,2017,140:116-122. doi: 10.1016/j.compscitech.2016.12.006
    [10] 刘玲, 张博明, 王殿富. 碳/环氧复合材料孔隙问题研究进展[J]. 宇航材料工艺, 2004(6):6-10. doi: 10.3969/j.issn.1007-2330.2004.06.002

    LIU L, ZHANG B M, WANG D F. Development of void problem for carbon/epoxy composite materials[J]. Aerospace Materials & Technology,2004(6):6-10(in Chinese). doi: 10.3969/j.issn.1007-2330.2004.06.002
    [11] 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 7-12.

    YI X S, DU S Y, ZHANG L T. Composites materrials handbook[M]. Beijing: Chemical industry press, 2009: 7-12 (in Chinese).
    [12] DONG C S. Effects of process-induced voids on the properties of fiber reinforced composites[J]. Journal of Materials Science & Technology,2016,32:596-604.
    [13] 吴恩启, 徐紫红, 郭新欣, 等. 孔隙率对碳纤维增强复合材料光热辐射信号的影响[J]. 中国激光, 2015, 42 (7):185-189.

    WU E Q, XU Z H, GUO X X et al. Influence of porosity on photothermal radiometry of carbon fiber reinforced polymers[J]. Chinese Journal of Lasers,2015,42 (7):185-189(in Chinese).
    [14] WU E Q, GAO Q, LI M H, et al. Study on in-plane thermal conduction of woven carbon fiber reinforced polymer by infrared thermography[J]. NDT & E International,2018,94:56-61.
    [15] WROBEL G, RDZAWSKI Z, MUZIA G, et al. Determination of thermal diffusivity of carbon/epoxy composites with different fiber content using transient thermography[J]. Journal of Achievements in Materials & Manufacturing Engineering,2009,37 (2):518-525.
    [16] GOU J J, DAI Y J, LI S G, et al. Numerical study of effective thermal conductivities of plain woven composites by unit cells of different sizes[J]. International Journal of Heat and Mass Transfer,2015,91:829-840. doi: 10.1016/j.ijheatmasstransfer.2015.07.074
    [17] 赵玉芬, 宋磊磊, 李嘉禄, 等. 三维机织碳纤维/环氧树脂复合材料在两种测量方法下的热响应机制对比[J]. 复合材料学报, 2018, 35 (1):103-109.

    ZHAO Y F, SONG L L, LI J L, et al. Comparison of thermal response mechanisms for three dimensional woven carbon fiber/epoxy resin composites under two measurement methods[J]. Acta Materiea Compositae Sinica,2018,35 (1):103-109(in Chinese).
    [18] DONG K, LIU K, PAN L J, et al. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures,2016,154:319-333. doi: 10.1016/j.compstruct.2016.07.071
    [19] RÜDIGER S, VADIM A. Modelling the heating process of CFRP by cw-laser radiation with special focus on the heat transfer by thermal radiation between the carbon fibers[J]. Procedia CIRP, 2018, 74: 562-567.
    [20] TAKUYA I, HOSEI N. Measurement of three-dimensional anisotropic thermal diffusivities for carbon fiber-reinforced plastics using lock-in thermography[J]. International Journal of Thermophysics,2015,36:2577-2589. doi: 10.1007/s10765-014-1755-5
    [21] TAKUYA I, HOSEI N. Measurement of 3D thermal diffusivity distribution with lock-in thermography and application for high thermal conductivity CFRPs[J]. Infrared Physics & Technology,2019,99:248-256.
    [22] MAYR G, PLANK B, SEKELJA J, et al. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers[J]. NDT & E International,2011,44:537-543.
    [23] ZALAMEDA J. Measured through-the-thickness thermal diffusivity of carbon fiber reinforced composite materials[J]. Journal of Composites Technology and Research, 1999; 21 (2): 98–102.
    [24] KULKARNI M, BRADY R. A model of global thermal conductivity in laminated carbon/carbon composites[J]. Composites Science and Technology, 1997; 57 (3): 277–85.
    [25] 朱洪艳, 李地红, 张东兴, 等. 孔隙率对碳纤维/环氧树脂复合材料层合板湿热性能的影响[J]. 复合材料学报, 2010, 27(2):24-30.

    ZHU H Y, LI D H, ZHANG D X, et al. Effect of porosity on the hygrothermal behaviour of carbon fiber reinforced epoxy composite laminates[J]. Acta Material Composite Silica,2010,27(2):24-30(in Chinese).
    [26] 李波, 赵美英, 万小朋. 孔隙微观特征对碳纤维/环氧树脂复合材料横向拉伸强度的影响[J]. 复合材料学报, 2018, 35(7):1864-1868.

    LI B, ZHAO M Y, WAN X P. Influence of void micro-characteristics on transverse tensile strength of unidirectional carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1864-1868(in Chinese).
    [27] 朱元林, 崔海涛, 温卫东, 等. 含纤维束截面形状变化的三维编织复合材料细观模型及刚度预报[J]. 复合材料学报, 2012, 29(6):187-196.

    ZHU Y L, CUI H T, WEN W D, et al. Microstructure model and stiffness prediction of 3D braided composites considering yarn′cross-section variation[J]. Acta Materiae Compositae Sinica,2012,29(6):187-196(in Chinese).
    [28] 卢子兴, 杨振宇, 刘振国. 三维四向编织复合材料结构模型的几何特性[J]. 北京航空航天大学学报, 2006(1):92-96. doi: 10.3969/j.issn.1001-5965.2006.01.022

    LU Z X, YANG Z Y, LIU Z G. Geometrical characteristics of structural model for 3D braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2006(1):92-96(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.01.022
    [29] MASAYA K, HOSEI N. Anisotropic thermal diffusivity measurements in high-thermal-conductive carbon fiber reinforced plastic composites[J]. Journal of Electronics Cooling and Thermal Control,2015,5 (1):15-25. doi: 10.4236/jectc.2015.51002
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  463
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-11-26
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回