留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用

谢若兰 何欢 杨世利 刘权锋 王艺蒸 余江

谢若兰, 何欢, 杨世利, 等. TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用[J]. 复合材料学报, 2021, 38(9): 3044-3052. doi: 10.13801/j.cnki.fhclxb.20201130.002
引用本文: 谢若兰, 何欢, 杨世利, 等. TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用[J]. 复合材料学报, 2021, 38(9): 3044-3052. doi: 10.13801/j.cnki.fhclxb.20201130.002
XIE Ruolan, HE Huan, YANG Shili, et al. Application of TiO2-g-C3N4-Bi2O3 composite heterogeneous catalytic materials in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3044-3052. doi: 10.13801/j.cnki.fhclxb.20201130.002
Citation: XIE Ruolan, HE Huan, YANG Shili, et al. Application of TiO2-g-C3N4-Bi2O3 composite heterogeneous catalytic materials in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3044-3052. doi: 10.13801/j.cnki.fhclxb.20201130.002

TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用

doi: 10.13801/j.cnki.fhclxb.20201130.002
基金项目: 国家重点研发计划项目(2018YFC1802605);四川省科技重点攻关项目(2017GZ0383);四川大学-宜宾市校市战略合作专项(2019CDYB-26)
详细信息
    通讯作者:

    余江,博士,教授,硕士生导师,研究方向为环境功能材料研究 E-mail:yuj@scu.edu.cn

  • 中图分类号: X53

Application of TiO2-g-C3N4-Bi2O3 composite heterogeneous catalytic materials in water treatment

  • 摘要: 异质结光催化材料在降解有毒有害污染物方面体现出优良的效果。以苯酚有机废水作为研究对象,球磨法所制备的TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3两种光催化材料作为实验材料,探究不同光源条件下TiO2-g-C3N4、TiO2-g-C3N4-Bi2O3的光催化特性及其对苯酚废水处理效果。结果表明,在可见光和紫外光单独照射条件下,三元体系的TiO2-g-C3N4-Bi2O3均比TiO2-g-C3N4具有更高的光催化活性,并且可见光条件下,TiO2-g-C3N4-Bi2O3比TiO2-g-C3N4的优势更明显;在可见光和紫外光同时照射时,TiO2-g-C3N4-Bi2O3、TiO2-g-C3N4对苯酚废水的降解效率分别达到99.44%、96.67%。表征结果表明,Bi2O3的掺杂有效地增强了催化剂在全光谱范围内对光的吸收,并且三元体系的构建有效地促进了光生电子与空穴的分离。研究结果表明,通过简单可控的球磨-微波加热-煅烧工艺,可以实现TiO2-g-C3N4-Bi2O3的制备,并且证实了TiO2-g-C3N4-Bi2O3材料在有机废水处理方面的良好前景。

     

  • 图  1  TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3复合材料的XRD图谱

    Figure  1.  XRD patterns of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3

    图  2  TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3的SEM图像和TEM图像

    Figure  2.  SEM and TEM images of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3((a),(c) TiO2-g-C3N4; (b),(d) TiO2-g-C3N4-Bi2O3)

    图  3  TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3复合材料的吸收光谱图 (a) 和对应的Tauc’s plots曲线图 (b)

    Figure  3.  Absorption spectra of TiO2-g-C3N4 (a) and TiO2-g-C3N4-Bi2O3 and their corresponding Tauc's plots (b)

    图  4  可见光照射下TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3对苯酚的降解效果

    Figure  4.  Degradation efficiency of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 for forphenol under visible light irradiation

    图  5  紫外光照射下TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3对苯酚的降解效果

    Figure  5.  Degradation efficiency of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 for phenol under UV light irradiation

    图  6  可见光和紫外光同时照射下TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3对苯酚的降解效果

    Figure  6.  Degradation efficiency of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 for phenol under UV-vis light irradiation

    图  7  紫外光 (a) 和可见光(b)条件下TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3对苯酚的动力学曲线

    Figure  7.  Kinetic curves of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 for phenol under UV light (a) and under Visible light (b)

    图  8  TiO2-g-C3N4-Bi2O3复合材料催化降解苯酚机制

    Figure  8.  Mechanism of catalytic degradation of wastewater by TiO2-g-C3N4-Bi2O3 composite powder

    表  1  各样品的禁带宽度(Eg)

    Table  1.   Energy gap (Eg) of all samples

    SampleTiO2g-C3N4Bi2O3[19]TiO2-g-C3N4TiO2-g-C3N4-Bi2O3
    Eg/eV 3.18 2.70 2.80 2.91 2.83
    下载: 导出CSV

    表  2  TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3对苯酚的反应动力学参数

    Table  2.   Reaction kinetic parameters of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 for phenol

    SampleKR2
    TiO2-g-C3N4 (UV ligh) 0.0967±0.0042 0.9925
    TiO2-g-C3N4/Bi2O3 (UV light) 0.1189±0.0066 0.9880
    TiO2-g-C3N4 (visible light) 0.0449±0.0031 0.9816
    TiO2-g-C3N4-Bi2O3 (visible light) 0.0734±0.0035 0.9909
    Notes: K—Slope of straight line; R2—Goodness of fit.
    下载: 导出CSV

    表  3  各样品的能带位(ECB)

    Table  3.   Conduction band edge (ECB) of all samples

    g-C3N4Bi2O3TiO2
    Eg/eV 2.70 2.80 3.18
    ECB/eV −1.12 0.33 −0.28
    EVB/eV 1.58 3.13 2.90
    下载: 导出CSV
  • [1] HU C, PENG T, HU X, et al. Plasmon-lnduced photodegradation of toxic pollutants with Ag-Agl/Al2O3 under visible-light irradiation[J]. Journal of the American Chemical Society,2010,132(2):857-862. doi: 10.1021/ja907792d
    [2] ZENG Q, BAI J, LI J, et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting[J]. Nano Energy,2017,41:225-232. doi: 10.1016/j.nanoen.2017.09.032
    [3] YAN J, WU H, CHEN H, et al. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting[J]. Applied Catalysis B Environmental,2016,191:130-137. doi: 10.1016/j.apcatb.2016.03.026
    [4] SOITAH T N, YANG C H, YU Y, et al. Properties of Bi2O3 thin films prepared via a modified Pechini route[J]. Current Applied Physics,2010,10(6):1372-1377. doi: 10.1016/j.cap.2010.04.006
    [5] 张洋洋. 几种铋基光催化剂的微结构调控及光催化性能研究[D]. 上海: 上海交通大学, 2016.

    ZHANG Y Y. Microstructure tuning and photocatalytic activity of several Bismuth-based photocatalysts[D]. Shanghai: Shanghai Jiao Tong University, 2016(in Chinese).
    [6] ZHANG J, Hu Y, JIANG X, et al. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity[J]. Journal of Hazardous Materials,2014,280:713-722. doi: 10.1016/j.jhazmat.2014.08.055
    [7] 叶仕雄. g-C3N4基三元复合材料的制备及光催化性能研究[D]. 赣州: 江西理工大学, 2020.

    YE S X. Preparation and photocatalytic properties of g-C3N4 based ternary composites[D]. Ganzhou: Jiangxi University of Science and Technology, 2020(in Chinese).
    [8] XIAO P, JIANG D, JU L, et al. Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride[J]. Applied Surface Science,2018,433(1):388-397.
    [9] DONG Z F, WU Y, THIRUGNANAM N, et al. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production[J]. Applied Surface Science,2018,430:293-300. doi: 10.1016/j.apsusc.2017.07.186
    [10] WANG Y, Yu J, PENG W, TIAN J, et al. Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation[J]. Scientific Reports,2019,9(1):5932. doi: 10.1038/s41598-019-42438-w
    [11] 全国环境保护部科技标准司. 水质. 挥发酚的测定. 4-氨基安替比林分光光度法: HJ 503—2009[S]. 北京: 中国环境科学出版社, 2009.

    Department of Science and Technology Standards. Ministry of Environmental Protection. Water quality. Determination of volatile phenolic compounds. 4-AAP spectrophotometric method: HJ 503—2009[S]. Beijing: China Environmental Press, 2009(in Chinese).
    [12] DONG F, WU L, SUN Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry,2011,21(39):15171-15174. doi: 10.1039/c1jm12844b
    [13] 牛宪军, 白杨, 田振勇等. Cu2+掺杂的金红石/锐钛矿型TiO2复合光催化材料的制备及性能研究[J]. 云南大学学报:自然科版, 2019, 41(5):1001-1008.

    ZHU X J, BAI Y, TIAN Z Y, et al. Preparation and properties of Cu2+ doped rutile/anatase TiO2 composite photocatalytic material[J]. Ournal of Yunnan University: Natural Sciences Edition,2019,41(5):1001-1008(in Chinese).
    [14] 李婷婷. 含铋氧化物复合光催化材料的制备及其光催化降解有机污染物[D]. 长沙: 湖南大学, 2015.

    LI T T. Bimuth-containing oxide composite photocatalytic materials: Preparation and their application of organic pollutants’degradation[D]. Changsha: Hu'nan Uninversity, 2015(in Chinese).
    [15] SUN J, LI X, ZHAO Q, et al. Quantum-sized BiVO4 modified TiO2 microflower composite heterostructures: Efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene[J]. Journal of Materials Chemistry A,2015,3(43):21655-21663. doi: 10.1039/C5TA05659D
    [16] NASIR M, ZHANG J, CHEN F, et al. Detailed study of Ce and C codoping on the visible light response of titanium dioxide[J]. Research on Chemical Intermediates,2015,41(3):1607-1624. doi: 10.1007/s11164-013-1297-7
    [17] AFROZE T, BHUIYAN A H. Infrared and ultraviolet-visible spectroscopic studies of plasma polymerized 1, 1, 3, 3-tetramethoxypropane thin films[J]. Thin Solid Films,2011,519(6):1825-1830. doi: 10.1016/j.tsf.2010.10.006
    [18] BENSAID, SAMIR, SACCO, et al. Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting[J]. Applied Catalysis A. General: An International Journal Devoted to Catalytic Science and Its Applications, 2015, 504: 266-271.
    [19] 李卫, 周科朝, 杨华. 氧化铋的应用研究进展[J]. 材料科学与工程学报, 2004, 22(1):154-156. doi: 10.3969/j.issn.1673-2812.2004.01.040

    LI W, ZHOU K L, YANG H. Application research progress of bismuth oxide[J]. Journal of Materials Science and Engineering,2004,22(1):154-156(in Chinese). doi: 10.3969/j.issn.1673-2812.2004.01.040
    [20] ZHU J, XIAO P, LI H, et al. ChemInform abstract: Graphitic carbon nitride: Synthesis, properties, and applications in catalysis[J]. ACS Applied Materials & Interfaces,2014,6(19):16449-16465.
    [21] HU J, XU, WANG J, et al. Photocatalytic property of a Bi2O3 nanoparticle modified BiOCl composite with a nanolayered hierarchical structure synthesized by in situ reactions[J]. Dalton Trans,2015,44(12):5386-5395. doi: 10.1039/C4DT03953J
    [22] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium Oxides[J]. Science,2001,293(5528):269-271. doi: 10.1126/science.1061051
    [23] IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. Journal of Physical Chemistry B,2003,107(23):5483-5486. doi: 10.1021/jp030133h
    [24] 张一兵, 陈博, 谈军. 铁掺杂二氧化钛的结构及其可见或紫外光下对有机物催化降解的行为分析[J]. 稀有金属, 2013, 37(1):92-96. doi: 10.3969/j.issn.0258-7076.2013.01.017

    ZHANG Y B, CHEN B, TAN J. Structure of Fe3+-doping titanium dioxide and photocatalytic degeneration of organic compound radiated by Vis or UV[J]. Chinese Journal of Rare Metals,2013,37(1):92-96(in Chinese). doi: 10.3969/j.issn.0258-7076.2013.01.017
    [25] SHAN W, HU Y, BAI Z, et al. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2016,188:1-12. doi: 10.1016/j.apcatb.2016.01.058
    [26] ZHANG F J, XIE F Z, ZHU S F, et al. novel photofunctional g-C3N4/Ag3PO4 bulk heterojunction for decolorization of Rh. B[J]. Applied Physics Letters,2013,102(12):14613-14619.
    [27] 杨慧娟, 邵铭哲, 周健兴等. Ag2O/TiO2异质结的光催化活性及耐光腐蚀性研究[J]. 人工晶体学报, 2017, 46(2):56-63.

    YANG H J, SHAO M Z, ZHOU J X, et al. Photocatalytic activity and anti-photocorrosion properties of Ag2O/TiO2 heterojunction[J]. Journal of Synthetic Crystals,2017,46(2):56-63(in Chinese).
    [28] SUN Y, YANG J, YANG S, et al. Development of an immunochromatographic lateral flow strip for the simultaneous detection of aminoglycoside residues in milk[J]. Rsc Advances,2018,8(17):9580-9586. doi: 10.1039/C8RA01116H
    [29] DONG G, ZHAO K, ZHANG L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chemical Communications,2012,48(49):6178-6180. doi: 10.1039/c2cc32181e
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  546
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-11-25
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回