留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能

徐文静 龙丽娟 徐国敏 黄绍文 向宇姝 李娟 秦舒浩 何敏 于杰

徐文静, 龙丽娟, 徐国敏, 等. DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能[J]. 复合材料学报, 2021, 38(9): 2848-2861. doi: 10.13801/j.cnki.fhclxb.20201124.003
引用本文: 徐文静, 龙丽娟, 徐国敏, 等. DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能[J]. 复合材料学报, 2021, 38(9): 2848-2861. doi: 10.13801/j.cnki.fhclxb.20201124.003
XU Wenjing, LONG Lijuan, XU Guomin, et al. Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2848-2861. doi: 10.13801/j.cnki.fhclxb.20201124.003
Citation: XU Wenjing, LONG Lijuan, XU Guomin, et al. Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2848-2861. doi: 10.13801/j.cnki.fhclxb.20201124.003

DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能

doi: 10.13801/j.cnki.fhclxb.20201124.003
基金项目: 国家自然科学基金(51463006);黔科合成果(项目号 [2018]4210);白科合同(项目号 [2019]15)和黔科合平台人才([2019]5632号)
详细信息
    通讯作者:

    龙丽娟,博士,副研究员,研究方向为聚合物的阻燃改性  E-mail:longlijuan.2006@aliyun.com

    徐国敏,博士,研究员,硕士生导师,研究方向为聚合物基导热复合材料  E-mail:410034801@qq.com

  • 中图分类号: TB332

Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites

  • 摘要: 研究9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-HQ)、6H-二苯并[c, e][1, 2]氧代磷酸甘油酯, 6, 6’-(1, 2-苯乙基)双-, 66’-二氧化物(DiDOPO)三种衍生物的热分解行为,并考察了它们对聚乳酸(PLA)材料热降解、阻燃及力学性能的影响。热重分析结果表明,DOPO阻燃剂初始分解温度(T5%)仅为154℃,DOPO-HQ的T5%提高到342℃,DiDOPO的T5%达到363℃,明显高于DOPO与DOPO-HQ。对比DOPO衍生物/PLA复合材料的T5%发现,T5%(DOPO/PLA,273.5℃)< T5%(DOPO-HQ/PLA,321.5℃)< T5%(DiDOPO/PLA,333.8℃),呈现出与阻燃剂热稳定性相一致的递增趋势。另外,热降解动力学结果表明复合材料的热降解活化能提高。通过热重-红外光谱分析(TG-IR)、裂解-气相色谱/质谱联用(PY-GC/MS)探究DOPO衍生物/PLA复合材料的热降解行为,结果表明三种阻燃剂主要通过产生磷氧自由基实现气相阻燃作用,DOPO-HQ和DiDOPO的特征基团可能在凝聚相中发挥作用。在垂直燃烧测试中三种体系均达到V-0级,其中DOPO/PLA熔滴最严重,DiDOPO/PLA体系熔滴得以抑制。此外,力学测试结果表明,DOPO/PLA拉伸强度比纯PLA下降83.1%,而DOPO-HQ/PLA和DiDOPO/PLA仅分别下降14.2%和15.6%。

     

  • 图  1  三种阻燃剂的结构:(a) 9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO);(b) 10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-HQ);(c) 6H-二苯并[c, e][1, 2]氧代磷酸甘油酯,6, 6’-(1, 2-苯乙基)双-, 66’-二氧化物(DiDOPO)

    Figure  1.  Structures of three flame retardants: (a) 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO); (b) 10-(2, 5-dihydroxyphenyl)-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO-HQ); (c) 6H-dibenz[c, e][1, 2]oxaphosphorin, 6’6-(1, 2-phenethyl)bis-, 6’6-dioxide (DiDOPO)

    图  2  三种阻燃剂分别在氮气(a)和空气(b)下的TG、DTG曲线

    Figure  2.  TG and DTG curves of three flame retardants: (a) N2 atmosphere; (b) Air

    图  3  DOPO(a)、DOPO-HQ(b)和DiDOPO(c)的TIC图

    Figure  3.  Total ion chromatograms of three flame retardants: (a) DOPO; (b) DOPO-HQ; (c) DiDOPO

    图  4  三种阻燃剂可能的分解过程:(a) DOPO;(b) DOPO-HQ;(c) DiDOPO

    Figure  4.  Decomposition pathways for three flame retardants: (a) DOPO; (b) DOPO-HQ; (c) DiDOPO

    图  5  聚乳酸(PLA)及其复合材料分别在氮气下的TG(a)、DTG(c)曲线和在空气下的TG(b)、DTG(d)曲线

    Figure  5.  Curves of poly(lactic acid) (PLA) and PLA composites: TG (a) and DTG (c) in N2 atmosphere; TG (b) and DTG (d) in air

    图  6  PLA及其复合材料的Kissinger法线性关系

    Figure  6.  Kissinger method linear relation of PLA and its composites

    图  7  氮气氛围下不同升温速率下TG曲线:((a) PLA; (c) DOPO/PLA; (e) DOPO-HQ/PLA; (g) DiDOPO/PLA)以及Ozawa拟合曲线:((b) PLA; (d) DOPO/PLA; (f) DOPO-HQ/PLA; (h) DiDOPO/PLA)

    Figure  7.  TG curves of PLA composites at different heating rates in N2: ((a) PLA; (c) DOPO/PLA; (e) DOPO-HQ/PLA; (g) DiDOPO/PLA) and Ozawa plots of PLA composites: ((b) PLA; (d) DOPO/PLA; (f) DOPO-HQ/PLA; (h) DiDOPO/PLA)

    图  10  PLA复合材料降解产物P—O在1110 cm−1和928 cm−1处峰强度与温度变化曲线

    Figure  10.  Peak intensity and temperature change curves of the degradation product P—O of PLA composites at 1110 cm−1 and 928 cm−1

    图  8  三维TG-IR图谱:(a)PLA;(b)DOPO/PLA;(c)DOPO-HQ/PLA;(d)DiDOPO/PLA);((e)、(f))CO和CO2的热解气体曲线

    Figure  8.  3D TG-IR spectra: (a) PLA; (b) DOPO/PLA; (c) DOPO-HQ/PLA; (d) DiDOPO/PLA; ((e), (f)) Pyrolytic gas curve of CO and CO2

    图  9  不同温度下裂解产物吸光度图:(a) PLA;(b) DOPO/PLA;(c) DOPO-HQ/PLA;(d) DiDOPO/PLA

    Figure  9.  Absorbance of pyrolysis products at different temperatures: (a) PLA; (b) DOPO/PLA; (c) DOPO-HQ/PLA; (d) DiDOPO/PLA

    图  11  PLA(A)、DOPO/PLA(a)、DOPO-HQ/PLA(b)和DiDOPO/PLA(c)的TIC图

    Figure  11.  Total ion chromatograms of PLA (A), DOPO/PLA (a), DOPO-HQ/PLA (b) and DiDOPO/PLA (c)

    图  12  PLA(A)、DOPO/PLA (a)、DOPO-HQ/PLA (b)和DiDOPO/PLA (c)可能的裂解过程

    Figure  12.  Decomposition pathways for PLA (A), DOPO/PLA (a), DOPO-HQ/PLA (b) and DiDOPO/PLA (c)

    图  13  PLA(a)、DOPO/PLA(b)、DOPO-HQ/PLA(c)和DiDOPO/PLA(d)的UL-94测试过程照片

    Figure  13.  Photographs taken during the UL-94 tests: (a) PLA; (b) DOPO/PLA; (c) DOPO-HQ/PLA; (d) DiDOPO/PLA

    图  14  PLA及其复合材料的流变曲线:(a)储能模量;(b)损耗模量;(c)复数黏度

    Figure  14.  Rheology curves of PLA and its composites: (a) Storage modulus G′; (b) Loss modulus G′′; (c) Complex viscosity η*

    图  15  阻燃剂对PLA力学性能的影响:(a)拉伸强度、缺口冲击强度和弯曲强度;(b)应力-应变曲线

    Figure  15.  Influence of flame retardant on mechanical properties of PLA: (a) Tensile strength, notched izod impact strength and flexural strength; (b) Strain−stress curves

    表  1  DOPO衍生物/PLA复合材料的配方及含P量

    Table  1.   Formulation and P content of DOPO derivatives/poly (lactic acid) composites

    SampleComponents/wt%P/wt%
    PLADOPODOPO-HQDiDOPO
    DOPO 14.4
    DOPO-HQ 9.6
    DiDOPO 11.6
    DOPO/PLA 90 10 1.44
    DOPO-HQ/PLA 90 10 0.96
    DiDOPO/PLA 90 10 1.16
    下载: 导出CSV

    表  2  三种阻燃剂在氮气和空气下的TG、DTG数据

    Table  2.   TG and DTG date of three flame retardants in N2 atmosphere and air

    SampleT5%/℃Tmax1/℃Tmax2/℃Residue at 600℃/%
    N2 DOPO 263.1 332.5 463.1 3.13
    DOPO-HQ 361.8 422.9 535.2 14.82
    DiDOPO 394.3 429.4 473.5 4.74
    Air DOPO 276.6 337.2 461.3 1.82
    DOPO-HQ 358.1 412.6 501.2 17.71
    DiDOPO 398.8 431.6 472.3 3.58
    Notes:T5%—Temperature corresponding to mass loss 5% of material; Tmax—Temperature corresponding to maximum thermal degradation rate.
    下载: 导出CSV

    表  3  PLA及其复合材料在氮气和空气下的TG、DTG和Ts数据

    Table  3.   TG, DTG and Ts date of PLA and its composites in N2 and air

    SampleT5%/℃Tmax1/℃Tmax2/℃Residue at 600℃/%Ts/℃
    N2 PLA 332.2 369.3 0 169.8
    DOPO/PLA 273.5 267.5 370.9 0.56 158.6
    DOPO-HQ/PLA 321.5 371.9 452.7 2.04 167.5
    DiDOPO/PLA 333.8 373.0 404.3 0.60 171.5
    Air PLA 318.3 358.0 0.12 173.2
    DOPO/PLA 271.4 266.3 371.4 0.33 158.1
    DOPO-HQ/PLA 322.2 371.7 444.9 2.05 167.6
    DiDOPO/PLA 336.1 373.0 404.1 0.47 172.2
    Notes: Ts—Temperature corresponding to long-term service of the sample.
    下载: 导出CSV

    表  4  根据Kissinger’s法得到的PLA及其复合材料的活化能

    Table  4.   Activation energy of PLA and its composites according to Kissinger’s method

    SlopeR2$ {E}_{{\rm{a}} } $/(kJ·mol−1)
    PLA −9381.46 0.9700 78.00
    DOPO/PLA −18641.69 0.9982 154.99
    DOPO-HQ/PLA −17337.76 0.9986 144.15
    DiDOPO/PLA −18370.83 0.9858 152.74
    Notes: R2—Linear correlation coefficient; $ {E}_{{\rm{a}} } $—Activation energy.
    下载: 导出CSV

    表  5  根据Ozawa’s法得到的PLA及其复合材料的活化能

    Table  5.   Activation energy of PLA and its composites according to Ozawa’s method

    αPLADOPO/PLADOPO-HQ/PLADiDOPO/PLA
    $ {E}_{{\rm{a}} } $/(kJ·mol−1)R2$ {E}_{{\rm{a}} } $/(kJ·mol−1)R2$ {E}_{{\rm{a}} } $/(kJ·mol−1)R2$ {E}_{{\rm{a}} } $/(kJ·mol−1)R2
    0.05 68.59 0.9846 68.22 0.9963 109.48 0.9938 131.19 0.9872
    0.1 71.16 0.9889 101.86 0.9899 115.65 0.9977 143.50 0.9862
    0.15 72.38 0.9870 145.29 0.9997 118.33 0.9979 148.29 0.9857
    0.2 73.72 0.9861 153.49 0.9997 120.82 0.9975 150.90 0.9854
    0.3 75.62 0.9827 157.52 0.9998 126.27 0.9972 153.10 0.9853
    0.4 77.20 0.9806 157.95 0.9998 131.30 0.9977 153.63 0.9856
    0.5 78.54 0.9794 157.01 0.9998 134.92 0.9981 153.29 0.9857
    Note: a—Weight-loss ratio.
    下载: 导出CSV

    表  6  PLA及其复合材料的UL-94和LOI数据

    Table  6.   UL-94 and LOI date of PLA and its composites

    SampleMass fraction of flame retardant/wt%UL-94 (3.2 mm)LOI/%
    t1/t2DrippingRating
    PLA BC Drip 21.6
    DOPO/PLA 10 0.21/0.31 Heavy V-0 33.5
    DOPO-HQ/PLA 10 9.33/0.51 Light V-0 29.7
    DiDOPO/PLA 10 0.40/0.47 No V-0 30.5
    Notes:t1/t2—Duration of sample burning; LOI—Limiting oxygen index.
    下载: 导出CSV
  • [1] ZHOU X, YANG R, WANG B, et al. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging[J]. Carbohydrate Polymers,2019,222:114912. doi: 10.1016/j.carbpol.2019.05.042
    [2] ASHWIN B, ABINAYA B, PRASITH T P, et al. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering[J]. International Journal of Biological Macromolecules,2020,162:523-532. doi: 10.1016/j.ijbiomac.2020.06.157
    [3] JEOUNG S K, HA J U, KO Y K, et al. Aerobic biodegradability of polyester/polylactic acid composites for automotive NVH parts[J]. International Journal of Precision Engineering and Manufacturing,2014,15(8):1703-1707. doi: 10.1007/s12541-014-0522-7
    [4] 王宪朋, 刘阳, 王传栋, 等. 静电纺丝法制备小口径胶原-聚乳酸人工血管[J]. 复合材料学报, 2017, 34(11):2550-2555.

    WANG Xianpeng, LIU Yang, WANG Chuandong, et al. Preparation of small-diameter collagen-polylactic acid artificial blood vessel by electrospinning[J]. Acta Materiae Compositae Sinica,2017,34(11):2550-2555(in Chinese).
    [5] 陈雅君, 毛小军, 王超, 等. 聚乳酸的阻燃改性研究进展[J]. 中国塑料, 2015, 29(3):1-8.

    CHEN Yajun, MAO Xiaojun, WANG Chao, et al. Research Progress in Flame Retardant of Poly (lactic acid)[J]. China Plastics,2015,29(3):1-8(in Chinese).
    [6] JIANG P, GU X, ZHANG S, et al. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant[J]. Industrial & Engineering Chemistry Research,2015,54(11):2974-2982.
    [7] XI W, QIAN L, QIU Y, et al. Flame-retardant behavior of Bi-group molecule derived from phosphaphenanthrene and triazine groups on polylactic acid[J]. Polymers for Advanced Technologies,2016,27(6):781-788. doi: 10.1002/pat.3714
    [8] CAO Y, WANG X, ZHANG W, et al. Bi-DOPO structure flame retardants with or without reactive group: Their effects on thermal stability and flammability of unsaturated polyester[J]. Industrial & Engineering Chemistry Research,2017,56(20):5913-5924.
    [9] HUDSON R F. The nature of the chemical bonding in organo-phosphorus compounds[J]. Pure & Applied Chemistry,1964,9(2):371-386.
    [10] WENDELS S, CHAVEZ T, BONNET M, et al. Recent developments in organophosphorus flame retardants containing P—C bond and their applications[J]. Materials,2017,10(7):784. doi: 10.3390/ma10070784
    [11] LONG L, YIN J, HE W, et al. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid)[J]. Industrial & Engineering Chemistry Research,2016,55(40):10803-10812.
    [12] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为第1部分: 导则 GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-Determination of burning behaviour by oxygen index-Part 1: Guidance GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008 (in Chinese).
    [13] 中国国家标准化管理委员会. 塑料拉伸性能的测定第 2 部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006 (in Chinese).
    [14] 中国国家标准化管理委员会. 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京, 2008.

    Standardization Administration of the People's Republic of China. Plastics-Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008 (in Chinese).
    [15] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008 (in Chinese).
    [16] 钱立军, 叶龙健, 韩鑫磊, 等. 基于磷杂菲基团化合物的构建与性能[J]. 化学进展, 2010(9):1776-1783.

    QIAN Lijun, YE Longjian, HAN Xinlei, et al. Construction and properties of compounds based on phosphaphenanthrene group[J]. Progress In Chemistry,2010(9):1776-1783(in Chinese).
    [17] LIANG S, NEISIUS M, MISPREUVE H, et al. Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds[J]. Polymer degradation and stability,2012,97(11):2428-2440. doi: 10.1016/j.polymdegradstab.2012.07.019
    [18] 冯彬, 俞鸣明, 吉静, 等. 聚砜酰胺基单聚合物复合材料的热性能及降解动力学[J]. 高分子材料科学与工程, 2016, 32(3):42-47.

    FENG Bin, YU Mingming, JI Jing, et al. Thermal properties and thermal degradation kinetics of polysulfonamide based single polymer composites[J]. Polymer Materials Science And Engineering,2016,32(3):42-47(in Chinese).
    [19] 郭海强. 复合电缆芯的研制及性能测试[D]. 济南: 山东大学, 2009.

    GUO Haiqiang. Preparation and performance test of composite cable cores[D]. Ji’nan: Shandong University, 2009 (in Chinese).
    [20] 邓晶晶, 黄宇, 羊森林, 等. 有机磷系化合物反应阻燃聚乳酸的机理与性能[J]. 工程塑料应用, 2009, 37(11):54-57. doi: 10.3969/j.issn.1001-3539.2009.11.015

    DENG Jingjing, HUANG Yu, YANG Senlin, et al. Mechanism and properties of organic phosphorus-containing compounds reacting flame-retardant polylactic acid[J]. Engineering Plastics Application,2009,37(11):54-57(in Chinese). doi: 10.3969/j.issn.1001-3539.2009.11.015
    [21] SAJNA V P, MOHANTY S, NAYAK S K. A study on thermal degradation kinetics and flammability properties of poly(lactic acid)/banana fiber/nanoclay hybrid bionanocomposites[J]. Polymer Composites,2017,38(10):2067-2079. doi: 10.1002/pc.23779
    [22] SINGH A, SINGH S, SONI P K, et al. Non-isothermal thermogravimetric degradation kinetics, reaction models and thermodynamic parameters of vinylidene fluoride based fluorinated polymers[J]. Journal of Macromolecular Science, Part B,2020,59(1):1-24. doi: 10.1080/00222348.2019.1679986
    [23] WANG J, ZHAN Y, FANG J, et al. Nonisothermal degradation kinetics for epoxy resin systems containing polymethylphenylsilsesquioxane[J]. Journal of Applied Polymer Science,2012,123(2):1024-1031. doi: 10.1002/app.34550
    [24] VYAZOVKIN S, DRANCA I, FAN X, et al. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene–clay nanocomposite[J]. Macromolecular Rapid Communications,2004,25(3):498-503. doi: 10.1002/marc.200300214
    [25] CHRISTOPH K, LIN Z, MANFRED D R. DOPO-based flame retardants: Synthesis and flame retaardant efficiency in polymers[J]. Materials China, 2013(3):144-158.
    [26] LONG L, YIN J, HE W, et al. Synergistic effect of different nanoparticles on flame retardant poly(lactic acid) with bridged DOPO derivative[J]. Polymer Composites,2019,40(3):1043-1052. doi: 10.1002/pc.24791
    [27] CHEN X, ZHUO J, JIAO C. Thermal degradation characteristics of flame retardant polylactide using TG-IR[J]. Polymer Degradation and Stability,2012,97(11):2143-2147. doi: 10.1016/j.polymdegradstab.2012.08.016
    [28] TAWIAH B, YU B, YUEN A C Y, et al. Thermal, crystalline and mechanical properties of flame retarded Poly(lactic acid) with a PBO-like small molecule - Phenylphosphonic Bis(2-aminobenzothiazole)[J]. Polymer Degradation and Stability,2019,163:76-86. doi: 10.1016/j.polymdegradstab.2019.03.002
    [29] 张通, 龙丽娟, 何文涛, 等. 9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物阻燃聚乳酸的性能研究[J]. 高分子学报, 2019, 50(1):71-81.

    ZHANG Tong, LONG Lijuan, HE Wentao, et al. Flame-retardant properties of 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives in poly(lactic acid)[J]. Acta Polymerica Sinica,2019,50(1):71-81(in Chinese).
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  561
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-17
  • 录用日期:  2020-11-08
  • 网络出版日期:  2020-11-25
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回