留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型多向2.5D机织预制体近净形编织结构设计

陆慧中 孙颖 焦亚男 陈利 李嘉禄

陆慧中, 孙颖, 焦亚男, 等. 典型多向2.5D机织预制体近净形编织结构设计[J]. 复合材料学报, 2021, 38(9): 3109-3117. doi: 10.13801/j.cnki.fhclxb.20201124.002
引用本文: 陆慧中, 孙颖, 焦亚男, 等. 典型多向2.5D机织预制体近净形编织结构设计[J]. 复合材料学报, 2021, 38(9): 3109-3117. doi: 10.13801/j.cnki.fhclxb.20201124.002
LU Huizhong, SUN Ying, JIAO Yanan, et al. Near net-shaped design on the architecture of typical multi-directional 2.5D woven preform[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3109-3117. doi: 10.13801/j.cnki.fhclxb.20201124.002
Citation: LU Huizhong, SUN Ying, JIAO Yanan, et al. Near net-shaped design on the architecture of typical multi-directional 2.5D woven preform[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3109-3117. doi: 10.13801/j.cnki.fhclxb.20201124.002

典型多向2.5D机织预制体近净形编织结构设计

doi: 10.13801/j.cnki.fhclxb.20201124.002
基金项目: 天津市自然科学基金(19JCYBJC8300)
详细信息
    通讯作者:

    孙颖,博士,教授,博士生导师,研究方向为高性能编织材料和树脂基纺织复合材料  E-mail:sunying@tjpu.edu.cn

  • 中图分类号: TB332

Near net-shaped design on the architecture of typical multi-directional 2.5D woven preform

  • 摘要: 针对多向异型复合材料构件用3D整体预制体,基于衬经2.5D机织结构,提出5种近净形转向仿形编织工艺,设计并制备了具有典型引纱加纱结构的板条状预制体试样。采用计算机断层扫描法(Micro-CT),观测各系统纱线横截面形态变化和纱线取向分布规律,发现引出加入的纱线沿织物厚度方向挤紧状态发生改变,其横截面从椭圆形变成梯形,又变为三角形,经纱被引出和加入会造成与其接触的纬纱横截面变化。结合复合材料构件的实际承载工况,对具有5种引纱加纱结构的复合材料试样进行了经向抗弯性能测试,结果表明,复合材料的弯曲强度和弯曲模量保持率分别达到82.6%~95.7%和89.1%~97.9%。可见,立足于满足复合材料力学性能要求,发展预制体的三维整体仿形编织技术,是实现复杂形状复合材料构件材料/结构一体化制造的有效途径。

     

  • 图  1  衬经2.5D机织引纱加纱预制体试样上表面引纱加纱点分布

    Figure  1.  Distribution of pull-out and add-in yarn points on the upper surface of 2.5D woven with warp-stuffer containing pull-out and add-in yarn preform specimen

    Pj—Warp count of preform specimen; Pw—Weft density of preform specimen

    图  2  衬经2.5D机织引纱加纱预制体试样照片

    Figure  2.  Photographs of 2.5D woven with warp-stuffer containing pull-out and add-in yarn preform specimen

    图  3  衬经2.5D机织复合材料弯曲试样表面引纱加纱点分布

    Figure  3.  Distribution of pull-out and add-in yarn points on the surface of bending 2.5D woven with warp-stuffer composite specimens

    Pj—Warp count of preform specimen; Pw—Weft density of preform specimen

    图  4  衬经2.5D机织引纱加纱预制体及其复合材料试样照片

    Figure  4.  Photographs of 2.5D woven with warp-stuffer containing pull-out and add-in yarn preform and its composite specimens

    图  5  衬经2.5D机织预制体Micro-CT图像

    Figure  5.  Micro-CT images of 2.5D woven with warp-stuffer containing pull-out and add-in yarn preforms

    图  7  S1方案引纱加纱横截面图像

    Figure  7.  Cross-section images of S1 pull-out and add-in yarn

    图  8  衬经纱引纱加纱图像

    Figure  8.  Images of pull-out and add-in stuffer warp

    图  6  衬经2.5D机织预制体结构横截面图像

    Figure  6.  Cross-section images of 2.5D woven with warp-stuffer preforms

    图  9  经纱引纱加纱图像

    Figure  9.  Images of pull-out and add-in binder warp

    图  10  衬经2.5D机织引纱加纱复合材料三点弯曲测试

    Figure  10.  Three-point bending test 2.5D woven with warp-stuffer containing pull-out and add-in yarn composites

    图  11  6种衬经2.5D机织复合材料试样弯曲载荷-挠度曲线

    Figure  11.  Load-deflection curves of 6 kinds of 2.5D woven with warp-stuffer composite bending specimens

    图  12  衬经2.5D机织复合材料试样FN弯曲破坏形貌

    Figure  12.  Morphologies of FN bending failure of 2.5D woven with warp-stuffer composites

    图  13  衬经2.5D机织引纱加纱复合材料试样弯曲破坏形貌

    Figure  13.  Morphologies of bending failure of 2.5D woven with warp-stuffer containing pull-out and add-in yarn composites

    表  1  衬经2.5D机织预制体结构参数

    Table  1.   Structure parameters of 2.5D woven with warp-stuffer preforms

    Weft density/(picks/cm/layer)Stuffer warp density/(ends/cm/layer)Binder warp density/(ends/cm/layer)Vf/%
    DesignedMeasuredDesignedMeasuredDesignedMeasuredDesignedMeasured
    3.5±0.1 3.6 3.0±0.1 3.0 3.0±0.1 3.0 55±3 52
    Note: Vf—Fiber volume fraction.
    下载: 导出CSV

    表  2  引纱加纱方案

    Table  2.   Pull-out and add-in yarn schemes

    No.NominationDescription
    1 S1 Pull-out a stuffer warp, add-in a new stuffer warp
    2 S2 Pull-out a stuffer warp, add-in a new stuffer warp, weaving one weft, pull-out the new stuffer warp, add-in a new stuffer warp again
    3 B1 Pull-out a binder warp, add-in a new binder warp
    4 B2U Pull-out the binder warp from under the weft to be weaved, add-in a new binder warp, weaving one weft, pull-out the new binder warp, add-in a new binder warp again
    5 B2A Pull-out the binder warp from above the weft to be weaved, add-in a new binder warp, weaving one weft, pull-out the new binder warp, add-in a new binder warp again
    Notes: S—Stuffer warp; B—Binder warp; U and A—Pulling out the binder warp from under and above the weft to be weaved.
    下载: 导出CSV

    表  3  衬经2.5D机织引纱加纱复合材料弯曲试样参数

    Table  3.   Structure parameters of bending 2.5D woven with warp-stuffer composite containing pull-out and add-in yarn samples

    SampleFNFS1FS2FB1FB2UFB2A
    Pulling-out stuffer warp/(numbers/time) 4 4 4
    Pulling-out binder warp/(numbers/time) 4 4
    Repeat pulling-out yarns/numbers 8 8 8
    Notes: F—Flexural; N—No yarns are pulled-out or added-in.
    下载: 导出CSV

    表  4  衬经2.5D机织预制体结构纱线参数测量值

    Table  4.   Measured values of yarn parameters of 2.5D woven with warp-stuffer preforms

    MeasuredWeftStuffer warpBinder warp
    Crimp angle/(°) 10.63±2 0 29.33±2
    Cross-sectional area/mm2 0.71±0.02 0.34±0.02 0.33±0.02
    Fill factor 0.63±0.04 0.66±0.04 0.68±0.04
    下载: 导出CSV

    表  5  5种引纱加纱方案中转折角测量值

    Table  5.   Measured values of steering angles in 5 kinds of pull-out and add-in yarn schemes

    Steering angle/(°)S1S2B1B2UB2A
    Pull-out yarn a 63.39±5 65.60±5 37.48±5 69.72±5 38.14±5
    Add-in yarn b 63.77±5 67.01±5 69.08±5 67.19±5 67.14±5
    Pull-out yarn b - 68.02±5 - 65.19±5 66.14±5
    Add-in yarn c - 64.40±5 - 69.12±5 39.14±5
    下载: 导出CSV

    表  6  衬经2.5D机织复合材料试样弯曲性能

    Table  6.   Bending properties of 2.5D woven with warp-stuffer composite samples

    SampleMaximum load/NBending strength/MPaBending modulus/GPa
    Warp-wiseCV/%Warp-wiseCV/%Retention/%Warp-wiseCV/%Retention/%
    FN 1246.25 2.46 418.53 2.33 100.0 33.25 2.80 100.0
    FS1 1090.24 4.67 375.70 4.35 89.8 30.51 2.30 91.8
    FS2 1033.13 3.13 351.26 3.11 83.9 29.63 2.99 89.1
    FB1 1179.06 6.27 400.88 6.28 95.7 32.52 3.08 97.9
    FB2U 1016.75 4.42 345.70 4.42 82.6 30.49 2.93 91.7
    FB2A 1035.78 5.11 352.17 5.23 84.1 30.29 2.44 91.1
    Notes: CV—Coefficient of variation in bending strength.
    下载: 导出CSV
  • [1] OUYANG Y, SUN B, GU B. Finite element analyses on bending fatigue of three-dimensional five-directional braided composite T-beam with mixed unit-cell model[J]. Journal of Composite Materials,2017,52(9):1139-1154.
    [2] LI D. Micro-structural analysis of three dimensional braided composites with profiled section[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(6):714-718.
    [3] TONG L, MOURITZ A P, BANNISTER M K. 3D Fibre reinforced polymer composites[M]. Amsterdam: Elsevier, 2002.
    [4] 刘丽芳, 郑义珠, 阎建华. 一种曲线式变截面台阶板的三维编织方法: 中国, CN102926128A[P]. 2013-02-13.

    LIU Lifang, ZHENG Yizhu, YAN Jianhua. The invention relates to a three-dimensional braiding method of curvilinear variable section step plate: China, CN102926128A[P]. 2013-02-13(in Chinese).
    [5] 李嘉禄, 陈利, 焦亚男. 变截面预成型制件的三维编织方法及其制件: 中国, CN1651627[P]. 2005-08-10.

    LI Jialu, CHEN Li, JIAO Ya’nan. Three-dimensional braiding method for variable-section preformed parts and its parts: China, CN1651627[P]. 2005-08-10(in Chinese).
    [6] 焦亚男. 三维异型整体编织增减纱理论和工艺研究[D]. 天津: 天津工业大学, 2005.

    JIAO Ya’nan. Research on the theory and technology of three dimensional heteromorphic integral weaving yarn increase and decrease[D]. Tianjin: Tiangong University, 2005(in Chinese).
    [7] BILISIK K, MOHAMED M H. Multiaxis three-dimensional flat woven preform (tube rapier weaving) and circular woven preform (radial crossing weaving)[J]. Textile Research Journal,2009,79(12):1067-1084. doi: 10.1177/0040517508099395
    [8] FAZELI M, HÜBNER M, LEHMANN T, et al. Development of spatially branched woven node structures on the conventional weaving loom[J]. Textile Research Journal,2017,88(13):1453-1465.
    [9] FAZELI M, KERN M, HOFFMANN G, et al. Development of three-dimensional profiled woven fabrics on narrow fabric looms[J]. Textile Research Journal,2015,86(12):1328-1340.
    [10] CHIU C, CHENG C. Weaving method of 3D woven preforms for advanced composite materials[J]. Textile Research Journal,2003,73(1):37-41. doi: 10.1177/004051750307300107
    [11] ZHENG T, LI S, JING S, et al. Designing of 3D woven integrated T-joint tube[J]. Textile Research Journal,2012,83(11):1143-1155.
    [12] SUGUN B S, SANDEEP D N. Integral weaving of orthogonal 3D ‘T’ stiffeners based on pleat weaving concept[J]. Journal of Industrial Textiles,2017,47(7):1626-1644.
    [13] CHEN X, TAYLOR L W, TSAI L. An overview on fabrication of three-dimensional woven textile preforms for compo-sites[J]. Textile Research Journal,2011,81(9):932-944. doi: 10.1177/0040517510392471
    [14] 郭兴峰, 彭淑静, 李凤强. 整体T形管道接头预型件的设计[J]. 天津工业大学学报, 2005(2):16-18. doi: 10.3969/j.issn.1671-024X.2005.02.005

    GUO Xingfeng, PENG Shujing, LI Fengqiang. Design of integrated composite T-joint preform[J]. Journal of Tianjin Polytechnic University,2005(2):16-18(in Chinese). doi: 10.3969/j.issn.1671-024X.2005.02.005
    [15] 李嘉禄, 焦亚男, 陈利. 一种可使编织成型方向折转的三维整体编织方法: 中国, CN1827888[P]. 2006-09-06.

    LI Jialu, JIAO Ya’nan, CHEN Li. The invention relates to a three-dimensional integral braiding method which can make the direction of braiding forming turn: China, CN1827888[P]. 2006-09-06(in Chinese).
    [16] 刘丽芳, 耿晓景, 阎建华. 一种圆角异型件的三维编织的净形制备方法: 中国, CN102965836A[P]. 2013-03-13.

    LIU Lifang, GENG Xiaojing, YAN Jianhua. The invention relates to a clean form preparation method for three dimensional braiding of round corner shaped pieces: China, CN102965836A[P]. 2013-03-13(in Chinese).
    [17] 李嘉禄, 焦亚男, 陈利. 一种多向预成型制件的三维整体编织方法: 中国, CN1827887[P]. 2006-09-06.

    LI Jialu, JIAO Ya’nan, CHEN Li. The invention relates to a three-dimensional integral braiding method for multidirectional preformed parts: China, CN1827887[P]. 2006-09-06(in Chinese).
    [18] 刘振国, 阚玉华. 多向预成型编织件及其三维整体编织方法: 中国, CN101586285[P]. 2009-11-25.

    LIU Zhenguo, KAN Yuhua. Multidirectional preformed braid and its three dimensional integral braid method: China, CN101586285[P]. 2009-11-25(in Chinese).
    [19] 陈利, 王心淼, 焦亚男. 一种整体舵增强织物及其编织方法: 中国, CN106987978B[P]. 2019-09-24.

    CHEN Li, WANG Xinmiao, JIAO Ya’nan. The invention relates to an integral rudder reinforcement fabric and a weaving method: China, CN106987978B[P].2019-09-24(in Chinese).
    [20] 孙颖, 陈利, 李嘉禄. 炭/环氧三维多向编织复合材料圆管相贯接头承载有限元分析[J]. 固体火箭技术, 2008(3):266-269. doi: 10.3969/j.issn.1006-2793.2008.03.016

    SUN Ying, CHEN Li, LI Jialu. Finite element analysis on loading properties of intersecting tubular joint with carbon/epoxy 3D multidirectional braided composite[J]. Journal of Solid Rocket Technology,2008(3):266-269(in Chinese). doi: 10.3969/j.issn.1006-2793.2008.03.016
    [21] HONG Y, YAN Y, TIAN Z, et al. Mechanical behavior analysis of 3D braided composite joint via experiment and multiscale finite element method[J]. Composite Structures,2018,208:200-212.
    [22] 杨彩云, 杨红娜. 3D机织复合材料卫星桁架接头的抗弯刚度研究[J]. 材料科学与工艺, 2008, 16(6):810-813.

    YANG Caiyun, YANG Hongna. Study on the bending rigidity of a satellite antenna truss joint made of 3D woven composites[J]. Materials Science and Technology,2008,16(6):810-813(in Chinese).
    [23] TAO G Q, LIU Z G, LV M Y, et al. The manufacture and test of advanced composite material flange[J]. Advanced Materials Research,2010,168-170:2606-2610. doi: 10.4028/www.scientific.net/AMR.168-170.2606
    [24] YAN S, ZENG X, LONG A. Effect of fibre architecture on tensile pull-off behaviour of 3D woven composite T-joints[J]. Composite Structures,2020,242:112194. doi: 10.1016/j.compstruct.2020.112194
    [25] UMAIR M, SHAKER K, JAVAID M U, et al. Effect of weaving patterns on damage resistance of 3D woven jointless T and H shaped reinforcements[J]. Mechanics of Advanced Materials and Structures,2020:1-14.
    [26] WANG H, WANG Z. Statistical analysis of yarn feature parameters in C/epoxy plain-weave composite using Micro CT with high-resolution lens-coupled detector[J]. Applied Composite Materials,2016,23(4):601-622. doi: 10.1007/s10443-016-9476-5
    [27] DESPLENTERE F, LOMOV S V, WOERDEMAN D L, et al. Micro-CT characterization of variability in 3D textile architecture[J]. Composites Science and Technology,2005,65(13):1920-1930. doi: 10.1016/j.compscitech.2005.04.008
    [28] YAN S, ZENG X, BROWN L, et al. Geometric modeling of 3D woven preforms in composite T-joints[J]. Textile Research Journal,2017,88(16):1862-1875.
    [29] YAN S, ZENG X, LONG A. Experimental assessment of the mechanical behaviour of 3D woven composite T-joints[J]. Composites Part B: Engineering,2018,154:108-113. doi: 10.1016/j.compositesb.2018.08.007
    [30] YAN S, ZENG X, LONG A. Meso-scale modelling of 3D woven composite T-joints with weave variations[J]. Composites Science and Technology,2019,171:171-179. doi: 10.1016/j.compscitech.2018.12.024
    [31] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fibre-reinforced plastic composites-Determination of flexural properties: GB/T1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  1584
  • HTML全文浏览量:  460
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 录用日期:  2020-11-09
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回