留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叠层缝合结构碳纤维/Al复合材料微观特征与高温弯曲性能

兰泽宇 余欢 徐志锋 王振军 蔡长春 冯景鹏

兰泽宇, 余欢, 徐志锋, 等. 叠层缝合结构碳纤维/Al复合材料微观特征与高温弯曲性能[J]. 复合材料学报, 2021, 38(9): 2979-2988. doi: 10.13801/j.cnki.fhclxb.20201124.001
引用本文: 兰泽宇, 余欢, 徐志锋, 等. 叠层缝合结构碳纤维/Al复合材料微观特征与高温弯曲性能[J]. 复合材料学报, 2021, 38(9): 2979-2988. doi: 10.13801/j.cnki.fhclxb.20201124.001
LAN Zeyu, YU Huan, XU Zhifeng, et al. Microscopic feature and high temperature bending properties of carbon fiber/Al composites with laminated stitch structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2979-2988. doi: 10.13801/j.cnki.fhclxb.20201124.001
Citation: LAN Zeyu, YU Huan, XU Zhifeng, et al. Microscopic feature and high temperature bending properties of carbon fiber/Al composites with laminated stitch structure[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2979-2988. doi: 10.13801/j.cnki.fhclxb.20201124.001

叠层缝合结构碳纤维/Al复合材料微观特征与高温弯曲性能

doi: 10.13801/j.cnki.fhclxb.20201124.001
基金项目: 国家自然科学基金 (51765045);航空科学基金 (2019ZF056013);江西省自然科学基金 (20202ACBL204010)
详细信息
    通讯作者:

    余欢,博士,教授,博士生导师,研究方向为先进材料及其加工技术  E-mail:yuhwan@163.com

  • 中图分类号: TB333

Microscopic feature and high temperature bending properties of carbon fiber/Al composites with laminated stitch structure

  • 摘要: 将M40J碳纤维(Cf)以叠层缝合结构编织成预制体,采用真空气压浸渗工艺制备成Cf/Al复合材料。在高温环境(350℃、400℃)下进行三点弯曲测试试验,通过SEM、TEM、EDS和XRD对材料的元素分布、物相组成、微观组织和界面特征进行观察分析,研究其高温弯曲性能,探讨该种材料在高温环境下弯曲失效机制。结果表明,制备的Cf/Al复合材料基体与增强体界面轮廓清晰且结合紧密,材料内部基体受残余拉应力。Cf/Al复合材料在350℃时的弯曲强度和模量分别为175.2 MPa和90.1 GPa,在400℃时为160.8 MPa和87.5 GPa;温度升高时叠层缝合结构Cf/Al复合材料的弯曲强度未出现大比例下降,其高温稳定性较其他编织结构更好。Cf/Al复合材料在高温环境下弯曲失效时受拉伸、压缩共同作用,其失效方式是基体开裂及部分纤维断裂,主导因素为基体在高温下软化和材料界面结合强度下降。

     

  • 图  1  Cf预制体实物图

    Figure  1.  Factual picture of Cf

    图  2  封装示意图及实物图

    Figure  2.  Schematic diagram and factual picture of packaged preform

    图  3  真空气压浸渗设备

    Figure  3.  Vacuum pressure infiltration equipment

    图  4  Cf/Al复合材料弯曲试样

    Figure  4.  Bending specimen of Cf/Al composites

    图  5  Cf/Al复合材料EDS图像

    Figure  5.  EDS image of Cf/Al composites

    图  6  Cf/Al复合材料XRD图谱

    Figure  6.  XRD spectra of Cf/Al composites

    图  7  Cf/Al复合材料的微观组织

    Figure  7.  Microstructures of Cf/Al composites((a) Warp; (b) Weft)

    图  8  Cf/Al复合材料的界面形貌及能谱分析图

    Figure  8.  Interface morphologies and mapping analysis of Cf/Al composites((a) Interface morphology of Cf/Al composites; (b) C; (c) Al; (d) Mg)

    图  9  叠层缝合结构Cf/Al复合材料高温弯曲性能

    Figure  9.  High temperature bending properties of Cf/Al composites with laminated stitch

    图  10  不同编织结构Cf/Al复合材料高温弯曲强度变化

    Figure  10.  High temperature bending strength changes of Cf/Al composites with different braided structures

    图  11  四种不同编织结构Cf/Al复合材料实物图及示意图

    Figure  11.  Factual pictures and schematic diagrams of Cf/Al composites with different braided structures

    图  12  叠层缝合结构Cf/Al复合材料位移-载荷曲线

    Figure  12.  Displacement-load curves of Cf/Al composites with laminated stitch

    图  13  叠层缝合结构Cf/Al复合材料在350℃下的弯曲断面图

    Figure  13.  Bending fracture diagram of Cf/Al composites with laminated stitch at 350℃ ((a) Bending failure specimen; (b) Pressure surface; (c) Tension surface; (d) Side)

    图  14  叠层缝合结构Cf/Al复合材料在400℃下的弯曲断面图

    Figure  14.  Bending fracture diagram of Cf/Al composites with laminated stitch at 400℃ ((a) Bending failure specimen; (b) Pressure surface; (c) Tension surface; (d) Side)

    图  15  叠层缝合结构Cf/Al复合材料在不同温度下的弯曲断口微观图像

    Figure  15.  Bending fracture morphologies of Cf/Al composites with laminated stitch ((a) T=350℃; (b) T=400℃)

    表  1  ZL301合金的主要化学成分

    Table  1.   Chemical composition of matrix alloy ZL301 wt%

    Alloy code Mg Si Ti Mn Zn Cu Al
    ZL301 9.5-11.0 0.3 0.15 0.15 0.15 0.1 Bal.
    下载: 导出CSV

    表  2  M40J碳纤维(Cf)的性能参数

    Table  2.   Property index of M40J carbon fiber (Cf)

    Type of fiberAverage diameter/μmTensile strength/MPaYoung’s modulus/GPaDensity/(g·cm−3)
    M40J 5 4410 377 1.77
    下载: 导出CSV

    表  3  叠层缝合工艺参数

    Table  3.   Technological parameters of laminated stitch

    ParameterValue
    Size of fabric/mm 180×200×5
    Density of fabric/(fiber·cm−1) Warp yarns: 6 Weft yarns:2
    Yarn specification Warp yarns: 6K×2yarns Weft yarns: 6K×1yarn
    Stitch fiber Double yarns
    Needled distance/mm 3
    Volume fraction/vol% 50
    下载: 导出CSV

    表  4  各材料中Al的晶格常数

    Table  4.   Lattice constants of Al in each material

    MaterialAluminumAs-cast aluminum alloyMatrix alloy of composite
    Lattice constant/
    (10−10m)
    4.04940 4.07850 4.08450
    下载: 导出CSV
  • [1] LI Shenghan, CHAO Chuenguang. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites[J]. Metallurgical and Materials Transactions A,2004,35(7):2153-2160. doi: 10.1007/s11661-004-0163-z
    [2] SHIRVANIMOGHADDAM K, HAMIM S U, KARBALAEI AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,92:70-96. doi: 10.1016/j.compositesa.2016.10.032
    [3] GUO Licheng, HUANG Jinzhao, ZHANG Li, et al. Damage evolution of 3D woven carbon/epoxy composites under tension-tension fatigue loading based on synchrotron radiation computed tomography (SRCT)[J]. International Journal of Fatigue,2021,142:105913. doi: 10.1016/j.ijfatigue.2020.105913
    [4] MOURITZ A P, COX B N. A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites[J]. Composites Part A: Applied Science and Manufacturing,2010,41(6):709-728. doi: 10.1016/j.compositesa.2010.02.001
    [5] XIE Junbo, LIANG Jun, FANG Guodong, et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology,2015,117:69-77. doi: 10.1016/j.compscitech.2015.06.003
    [6] CAI Yanzhi, FAN Shangwu, LIU Heyi, et al. Mechanical properties of a 3D needled C/SiC composite with graphite filler[J]. Materials Science and Engineering: A,2010,527(3):539-543. doi: 10.1016/j.msea.2009.08.031
    [7] CAI Yanzhi, FAN Shangwu, YIN Xiaowei, et al. Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites[J]. Ceramics International,2014,40(1, Part A):399-408. doi: 10.1016/j.ceramint.2013.06.015
    [8] JIANG Nan, LI Diansen, YAO Qianqian, et al. Influence of temperature on the bending properties and failure mechanism of 3D needle-punched carbon/epoxy compo-sites[J]. Fibers & Polymers,2017,18(2):313-321.
    [9] LI Diansen, FANG Daining, ZHANG Guobing, et al. Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite[J]. Materials & Design,2012,41(16):167-170.
    [10] LI Diansen, YAO Qianqian, JIANG Nan, et al. Bend properties and failure mechanism of a carbon/carbon composite with a 3D needle-punched preform at room and high temperatures[J]. New Carbon Materials,2016,31(4):437-444. doi: 10.1016/S1872-5805(16)60023-9
    [11] XUAN Jiaqian, LI Diansen, JIANG Lei. Fabrication, properties and failure of 3D stitched carbon/epoxy composites with no stitching fibers damage[J]. Composite Structures,2019,220:602-607. doi: 10.1016/j.compstruct.2019.03.080
    [12] 冯景鹏, 余欢, 徐志锋, 等. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020(6):132-139.

    FENG Jingpeng, YU Huan, XU Zhifeng, et al. Microstructure, bending and shear properties of 2.5D shallow cross-linkde Cf/Al composites[J]. Journal of Materials Engineering,2020(6):132-139(in Chinese).
    [13] 冯景鹏, 余欢, 徐志锋, 等. 三维正交Cf/Al复合材料的显微组织与弯曲性能[J]. 特种铸造及有色合金, 2020, 40(2):202-206.

    FENG Jingpeng, YU Huan, XU Zhifeng, et al. Microstructure and bending properties of three-dimensional orthogonal Cf/Al composites[J]. Special Casting & Nonferrous Alloys,2020,40(2):202-206(in Chinese).
    [14] LEE Woeishyan, SUE Wuchung, LIN Chifeng. The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite[J]. Composites Science and Technology,2000,60(10):1975-1983. doi: 10.1016/S0266-3538(00)00083-X
    [15] LI Daguang, CHEN Guoqin, JIANG Longtao, et al. Mechanical property of M40Jf/5A06Al composite at elevated temperatures[J]. Acta Metallurgica Sinica,2015,28(9):1175-1182.
    [16] HE Chunwang, GE Jingran, ZHANG Binbin, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature[J]. Composites Science and Technology,2020,196:108230. doi: 10.1016/j.compscitech.2020.108230
    [17] WANG Zhenjun, YANG Siyuan, DU Zehui, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal tensile loadings[J]. Materials,2019,12(19):3133. doi: 10.3390/ma12193133
    [18] WANG Zhenjun, ZHU Shixue, YU Huan, et al. Effect of fabrication temperature on microstructure and mechanical properties of Cf/Al composites at room and elevated temperature[J]. Rare Metal Materials & Engineering,2018,47(3):982-989.
    [19] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fibre-reinforced plastic composites-Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] WANG Xu, JIANG Daming, WU Gaohui, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite[J]. Materials Science and Engineering: A,2008,497(1):31-36.
    [21] 聂明明, 徐志锋, 余欢, 等. 基体合金对连续M40石墨纤维/Al复合材料纤维损伤和断裂机制的影响[J]. 复合材料学报, 2016, 33(12):105-114.

    NIE Mingming, XU Zhifeng, YU Huan, et al. Effects of matrix alloy on fiber damage and fracture mechanism of continuous M40 graphite fiber/Al composites[J]. Acta Materiae Compositae Sinica,2016,33(12):105-114(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  485
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 录用日期:  2020-11-15
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回