留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳酸低聚物改性的纳米碳酸钙对聚乳酸性能的影响

王晓茹 陈支泽

王晓茹, 陈支泽. 乳酸低聚物改性的纳米碳酸钙对聚乳酸性能的影响[J]. 复合材料学报, 2021, 38(9): 2786-2794. doi: 10.13801/j.cnki.fhclxb.20201116.004
引用本文: 王晓茹, 陈支泽. 乳酸低聚物改性的纳米碳酸钙对聚乳酸性能的影响[J]. 复合材料学报, 2021, 38(9): 2786-2794. doi: 10.13801/j.cnki.fhclxb.20201116.004
WANG Xiaoru, CHEN Zhize. Effect of nano-calcium carbonate modified by lactic acid oligomers on the properties of polylactic acid[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2786-2794. doi: 10.13801/j.cnki.fhclxb.20201116.004
Citation: WANG Xiaoru, CHEN Zhize. Effect of nano-calcium carbonate modified by lactic acid oligomers on the properties of polylactic acid[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2786-2794. doi: 10.13801/j.cnki.fhclxb.20201116.004

乳酸低聚物改性的纳米碳酸钙对聚乳酸性能的影响

doi: 10.13801/j.cnki.fhclxb.20201116.004
基金项目: 国家自然科学基金 (51503029)
详细信息
    通讯作者:

    陈支泽,博士,副教授,硕士生导师,研究方向为环境友好高分子材料的制备及应用,纳米粉体材料的改性与应用  E-mail:chenzhize@dhu.edu.cn

  • 中图分类号: TB332

Effect of nano-calcium carbonate modified by lactic acid oligomers on the properties of polylactic acid

  • 摘要: 采用直接缩聚法制备了乳酸低聚物,用该物质对纳米碳酸钙(CaCO3)进行改性,得到改性纳米碳酸钙(g-CaCO3)。将g-CaCO3与聚乳酸(PLA)通过溶液共混制备了g-CaCO3/PLA复合材料。通过FTIR、吸油值等对g-CaCO3进行了表征,并采用SEM、DSC、万能试验机、流变测试仪、透湿仪、紫外-可见-近红外(UV-Vis-AIR)分光光度计研究了g-CaCO3对PLA结构和性能的影响。结果表明,乳酸低聚物的改性降低了CaCO3的吸油值,改善了CaCO3与PLA的界面相容性,促进了CaCO3在PLA基体中的分散;同时,g-CaCO3在PLA基体中起到成核剂的作用,改善了PLA材料的结晶能力;随着g-CaCO3添加量的增加,g-CaCO3/PLA复合材料的拉伸强度和断裂延伸率呈先上升后下降的趋势,当添加5wt%的g-CaCO3时,拉伸强度比5%CaCO3/PLA复合材料高50%,比纯PLA高20%,当添加量达到10wt%时,拉伸强度仍比纯PLA高出13%;加入g-CaCO3能够提高复合材料的储能模量和复数黏度;此外,g-CaCO3的加入,提高了PLA材料对紫外可见光和水蒸气的阻隔性能。

     

  • 图  1  乳酸低聚物改性纳米碳酸钙(g-CaCO3)洗涤残液的FTIR图谱

    Figure  1.  FTIR spectra of washing liquor of lactic acid oligomer modified nano-calcium carbonate (g-CaCO3)

    图  2  乳酸低聚物的合成及其在纳米碳酸钙(CaCO3)表面的接枝

    Figure  2.  Synthesis of lactic acid oligomers and its graft on the surface of CaCO3

    图  3  CaCO3、g-CaCO3和乳酸低聚物的FTIR图谱

    Figure  3.  FTIR spectra of CaCO3, g-CaCO3 and lactic acid oligomer

    图  4  CaCO3和g-CaCO3的吸油值

    Figure  4.  Oil absorption value of CaCO3 and g-CaCO3

    图  5  CaCO3和g-CaCO3在二氯甲烷中的分散性

    Figure  5.  Dispersion of CaCO3 and g-CaCO3 in dichloromethane

    图  6  CaCO3和g-CaCO3对PLA复合材料断面形貌的影响

    Figure  6.  Influence of CaCO3 and g-CaCO3 on the fracture appearance of PLA

    图  7  纯PLA及g-CaCO3/PLA复合材料的DSC曲线

    Figure  7.  DSC thermograms of pure PLA and g-CaCO3/PLA composites

    图  8  5% CaCO3/PLA、纯PLA和不同填料含量的g-CaCO3/PLA复合材料的拉伸性能

    Figure  8.  Tensile performance of 5% CaCO3/PLA, pure PLA and g-CaCO3/PLA composites with different filler contents

    图  9  纯PLA及g-CaCO3/PLA复合材料的动态频率扫描曲线

    Figure  9.  Dynamic frequency scanning curves of pure PLA and g-CaCO3/PLA composites

    图  10  纯PLA及g-CaCO3/PLA复合材料的外观(a)和透过率(b)曲线

    Figure  10.  Appearance (a) and transmittance (b) of pure PLA and g-CaCO3/PLA composites

    图  11  纯PLA和g-CaCO3/PLA复合材料的水蒸气透过率(RWVT)

    Figure  11.  Water vapor transmission rate (RWVT) for pure PLA and g-CaCO3/PLA composites

    表  1  聚乳酸(PLA)基复合材料的组分

    Table  1.   Component of polylactic acid (PLA) matrix composites

    Sample numberMass fraction/wt%
    PLAg-CaCO3CaCO3
    5% CaCO3/PLA 95 5
    Pure PLA 100 0
    2.5% g-CaCO3/PLA 97.5 2.5
    5% g-CaCO3/PLA 95 5
    10% g-CaCO3/PLA 90 10
    20% g-CaCO3/PLA 80 20
    30% g-CaCO3/PLA 70 30
    下载: 导出CSV

    表  2  纯PLA和g-CaCO3/PLA复合材料DSC二次升温曲线对应的数据

    Table  2.   DSC data of pure PLA and g-CaCO3/PLA composites during the second heating scan

    Sample numberTg/℃Tcc/℃Tm1/℃Tm2/℃Hcc/(J·g-1)Hm/(J·g-1)Xc/%
    Pure PLA 61.0 122.8 165.3 169.7 35.9 38.5 2.8
    2.5% g-CaCO3/PLA 61.2 120.7 163.7 169.7 35.3 38.1 3.1
    5% g-CaCO3/PLA 61.4 117.1 163.7 169.6 33.7 37.0 3.7
    10% g-CaCO3/PLA 60.9 116.7 162.7 169.1 29.2 33.9 5.6
    20% g-CaCO3/PLA 58.7 114.2 162.4 169.1 27.6 32.7 6.9
    30% g-CaCO3/PLA 60.7 113.7 161.9 168.8 21.3 26.0 7.2
    Notes:Tg is glass transition temperature; Tcc is cold crystallization temperature; Tm1 and Tm2 are the melting temperature; ΔHcc is the enthalpy of cold crystallization; ΔHm is the enthalpy of melting; Xc is the crystallization.
    下载: 导出CSV
  • [1] 洪浩群, 刘灏, 张海燕. 甘蔗渣的改性方法对甘蔗渣/聚乳酸复合材料结构与性能的影响[J]. 复合材料学报, 2018, 35(9):2369-2378.

    HONG Haoqun, LIU Hao, ZHANG Haiyan. Effect of modifying methods of bagasse on structure and properties of bagasse/polylactic acid composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2369-2378(in Chinese).
    [2] ZHANG Y, DENG B Y, LIU Q S. Rheology and crystallisation of PLA containing PLA-grafted gsilica[J]. Plastics, Rubber and Composites,2014,43(9):309-314. doi: 10.1179/1743289814Y.0000000099
    [3] 贾仕奎, 朱艳, 王忠, 陈立贵, 付蕾. POE-g-MA对纳米CaCO3/聚乳酸复合材料热及流变性能影响[J]. 复合材料学报, 2017, 34(2):256-262.

    JIA Shikui, ZHU Yan, WANG Zhong, et al. Influences of POE-g-MA on thermal and rheological properties of nano-CaCO3/PLA composites[J]. Acta Materiae Compositae Sinica,2017,34(2):256-262(in Chinese).
    [4] MAHMOODI A, GHODRATI S, KHORASANI M. High-strength, low-permeable, and light-protective composite films based on a hybrid gpigment and biodegradable PLA for food packaging applications[J]. ACS Omega,2019,4(12):14947-14954. doi: 10.1021/acsomega.9b01731
    [5] CHOW W S, LEU Y Y, ISHAK Z A M. Mechanical, thermal and morphological properties of injection molded poly (lactic acid)/calcium carbonate composites[J]. Periodica Polytechnica, Mechanical Engineering,2016,60(1):15-20. doi: 10.3311/PPme.8319
    [6] BOUAKAZ B S, PILLIN I, HABI A, et al. Synergy between fillersin organomontmorillonite/graphene-PLA nanocomposites[J]. Applied Clay Science,2015,116:69-77.
    [7] LIANG J Z, ZHOU L, TANG C Y, et al. Crystalline properties of poly (L-lactic acid) composites filled with nanometer calcium carbonate. Composites Part B: Engineering, 2013, 45: 1646-1650.
    [8] 王红娟, 容腾, 容敏智, 等. CaCO3增强马来酸化蓖麻油树脂及其泡沫塑料[J]. 复合材料学报, 2014, 31(6):1383-1393.

    WANG Hongjuan, RONG Teng, RONG Zhimin, et al. CaCO3 reinforced maleated castor oil resin and its foam plastics[J]. Acta Materiae Compositae Sinica,2014,31(6):1383-1393(in Chinese).
    [9] LIANG J Z, ZHOU L, TANG C Y, et al. Crystalline properties of poly (L-lactic acid) composites filled with gmeter calcium carbonate[J]. Composites Part B: Engineering,2013,45:1646-1650. doi: 10.1016/j.compositesb.2012.09.086
    [10] KIM D W, LEE J Y, LEE S M, et al. Surface modification of calcium carbonate gparticles by fluorosurfactant[J]. Colloids and Surfaces,2018,536:213-223. doi: 10.1016/j.colsurfa.2017.05.002
    [11] SHIMPI N, MALI A, HANSORA D P, et al. Synthesis and surface modification of calcium carbonate particles using ultrasound cavitation technique[J]. Gscience and Gengineering,2015,3(1):8-12.
    [12] YAN S F, YIN J B, YANG Y, et al. Surface-grafted silica linked with L-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(L-lactide)[J]. Polymer,2007,48:1688-1694. doi: 10.1016/j.polymer.2007.01.037
    [13] 常迎星, 王丹丹, 巩艳萍, 等. 纳米碳酸钙吸油值的研究[J]. 化学试剂, 2019, 41(6):577-580.

    CHANG Yingxing, WANG Dandan, GONG Yanping, et al. Oil absorption value of nano-calcium carbonate[J]. Huaxue Shiji,2019,41(6):577-580(in Chinese).
    [14] 中国国家标准化管理委员会(标准制定单位). 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties: GB/T 1040—2006[S], Beijing: China Standards Press, 2006(in Chinese).
    [15] SHIRSATH S R, BHANVASE B A, SONAWANE S H, et al. A novel approach for continuous synthesis of calcium carbonate using sequential operation of two sonochemical reactors[J]. Ultrasonics Sonochemistry,2017,35(Pt A):124-133.
    [16] TVERDOKHLEBOV S I, BOLBASOV E N, SHESTERIKOV E V, et al. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility[J]. Applied Surface Science,2015,329:32-39. doi: 10.1016/j.apsusc.2014.12.127
    [17] 高成涛, 谢海波, 郭建兵, 等. 海藻酸盐协效碳酸钙对聚乳酸热性能及断面形貌的影响[J]. 塑料科技, 2019, 47(12):83-88.

    GAO Chengtao, XIE Haibo, GUO Jianbing, et al. Synergistic effect of alginate blended with calcium carbonate on thermal behavior and morphology of polylactic acid[J]. Plastics Science and Technology,2019,47(12):83-88(in Chinese).
    [18] YOKOHARA T, YAMAGUCHI M. Structure and properties for biomass-based polyester blends of PLA and PBS[J]. European Polymer Journal,2008,44(3):677-685. doi: 10.1016/j.eurpolymj.2008.01.008
    [19] MAHDAVI M, YOUSEFZADE O, GARMABI H. A simple method for preparation of microcellular PLA/calcium carbonate gcomposite using super critical nitrogen as a blowing agent: Control of microstructure[J]. Advances in Polymer Technology,2018,37(8):3017-3026. doi: 10.1002/adv.21972
    [20] 袁彩霞, 罗卫华, 袁光明, 等. 增容纳米纤维素/聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2016, 33(12):2718-2724.

    YUAN Caixia, LUO Weihua, YUAN Guangming, et al. Prepartion and properities of compatobilizad cellulose gcrystal/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica,2016,33(12):2718-2724(in Chinese).
    [21] FRONE A N, PANAITESCU D M, CHIULAN I, et al. The effect of cellulose gfibers on the crystallinity and structure of poly (lactic acid) composites[J]. Journal of Materials Science,2016,51(21):9771-9791. doi: 10.1007/s10853-016-0212-1
    [22] JIANG L, ZHANG J W, WOLCOTT M P. Comparison of polylactide/g-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms[J]. Polymer Testing,2007,48(26):7632-7644.
    [23] ZHANG Y C, WU J, WANG B J, et al. Cellulose gfibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach[J]. Cellulose,2017,24(8):3313-3322. doi: 10.1007/s10570-017-1324-8
    [24] LI X H, TJONG S C, MENG Y Z, et al. Fabrication and properties of poly (propylene carbonate)/calcium carbonate composites[J]. Journal of Polymer Science, Part B: Polymer Physics,2003,41(15):1806-1813. doi: 10.1002/polb.10546
    [25] DI Y W, IANNACE S, NICOLAIS L. Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing[J]. Journal of Polymer Science, Part B: Polymer Physics,2005,‏43(6):‏689-698.
    [26] GONG G, WU J S, LIN Y, et al. Dynamic rheological behavior of isotactic polypropylene filled with nano-calcium carbonate modified by stearic acid coating[J]. Journal of Macromolecular Science, Part B: Physics,2009,48(2):329-343. doi: 10.1080/00222340802679938
    [27] 邰晶磊. 聚乳酸涂布—热压复合纸的制备及其水蒸汽渗透行为的研究[D]. 广州: 华南理工大学, 2014.

    TAI Jinglei. The preparation of polylactic acid coating-hot pressing composite paper and its water vapor permeability behavior research[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
    [28] 宋志勇, 李乃状, 张蕾, 等. 改性二氧化硅对SiO2/PLA复合膜性能的影响[J]. 包装工程, 2020, 41(15):142-148.

    SONG Zhiyong, LI Naizhuang, ZHANG Lei, et al. Effect of modified silica on properties of SiO2/PLA composite films[J]. Packaging Engineering,2020,41(15):142-148(in Chinese).
    [29] KARKHANIS S S, STARK N M, SABO R C, et al. Water vapor and oxygen barrier properties of extrusion-blown poly (lactic acid)/cellulose crystals composite films[J]. Composites Part A: Applied Science and Manufacturing,2018,114:204-221. doi: 10.1016/j.compositesa.2018.08.025
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  455
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-30
  • 录用日期:  2020-11-08
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回