留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeO2/ZnO复合光催化剂制备及其可见光催化性能

陈奕桦 胡俊俊 丁同悦 杨本宏 黄智锋

陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9): 3008-3015. doi: 10.13801/j.cnki.fhclxb.20201112.001
引用本文: 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9): 3008-3015. doi: 10.13801/j.cnki.fhclxb.20201112.001
CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3008-3015. doi: 10.13801/j.cnki.fhclxb.20201112.001
Citation: CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3008-3015. doi: 10.13801/j.cnki.fhclxb.20201112.001

CeO2/ZnO复合光催化剂制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20201112.001
基金项目: 安徽省科技攻关后续项目(0392118031);合肥学院研究生创新研究项目(CX201906)
详细信息
    通讯作者:

    杨本宏,博士,教授,硕士生导师,研究方向为光催化材料合成与应用 E-mail:yangbh@hfuu.edu.cn

  • 中图分类号: O643.3

Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst

  • 摘要: 采用微波超声法,以ZnO为基体原位生长CeO2晶体,得到CeO2/ZnO复合光催化剂。利用XRD、SEM、TEM、PL、UV-Vis DRS等方法对制备的材料进行表征,并通过可见光降解AF对样品的光催化性能进行评价。结果表明,ZnO为纳米片互相穿插形成的花形球状结构,其表面附着有纳米CeO2颗粒,分散性较好。ZnO和CeO2的摩尔比为20∶1的CeO2/ZnO复合光催化剂在可见光下表现出良好的光催化活性,光照90 min后对AF的光降解率达到96.44%,较纯相ZnO和CeO2有显著提高。CeO2/ZnO的稳定性较好,6次使用后对AF的光降解率仍达到93.53%。机制研究发现,·O2是光催化降解AF过程中的主要活性物种。

     

  • 图  1  ZnO、CeO2和CeO2/ZnO复合光催化剂的XRD图谱

    Figure  1.  XRD patterns of ZnO, CeO2 and CeO2/ZnO composite photocatalysts

    图  2  ZnO、CeO2/ZnO-3的SEM图像 ((a)~(b)) 和CeO2/ZnO-3的TEM图像 ((c)~(d))

    Figure  2.  SEM images of ZnO, CeO2/ZnO-3 ((a)-(b)) and TEM images of CeO2/ZnO-3 ((c)-(d))

    图  3  CeO2/ZnO-3的EDS mapping图谱

    Figure  3.  EDS mapping spectra of CeO2/ZnO-3

    图  4  ZnO、CeO2和CeO2/ZnO复合光催化剂的UV-vis DRS图谱

    Figure  4.  Uv-vis DRS spectra of ZnO, CeO2 and CeO2/ZnO composite photocatalysts

    图  5  ZnO、CeO2和CeO2/ZnO复合光催化剂的PL图谱

    Figure  5.  PL spectra of ZnO, CeO2 and CeO2/ZnO composite photocatalysts

    图  6  ZnO、CeO2和CeO2/ZnO对AF的光降解率曲线

    Figure  6.  Degradation curves of AF solution by ZnO, CeO2 and CeO2/ZnO

    图  7  CeO2/ZnO对酸性品红(AF)的光催化循环测试

    Figure  7.  Photocatalytic cycle tests of CeO2/ZnO on acid fuchsin (AF) solution

    图  8  使用前后CeO2/ZnO复合光催化剂的XRD图谱

    Figure  8.  XRD patterns of CeO2/ZnO composite photocatalyst before and after usage

    图  9  CeO2/ZnO光降解AF的UV-vis DRS图谱

    Figure  9.  UV-vis DRS absorption spectra of AF degraded by CeO2/ZnO

    图  10  CeO2/ZnO光催化降解AF产物的HPLC图谱

    Figure  10.  HPLC analysis of photocatalytic degradation of AF by CeO2/ZnO

    图  11  不同捕获剂对AF光降解率的影响

    Figure  11.  Effects of different capture agents on AF degradation rate

    BQ—Benzoquinone; EDTA—Ethylene diamine tetraacetic acid; TBA—Tert butyl alcohol

    图  12  CeO2/ZnO复合光催化剂的光催化机制示意图

    Figure  12.  Photocatalytic mechanism of CeO2/ZnO composite semiconductor

    表  1  样品成分配比

    Table  1.   Sample compositions

    Samplen(Zn)∶n(Ce)ZnO/gCe(NO3)3·6H2O/g
    CeO2/ZnO-1 10∶1 1.02 0.54
    CeO2/ZnO-2 15∶1 1.53
    CeO2/ZnO-3 20∶1 2.04
    CeO2/ZnO-4 30∶1 3.05
    CeO2/ZnO-5 50∶1 5.09
    下载: 导出CSV
  • [1] 凡文. 石油和化工行业70年发展回顾[J]. 中国石油和化工经济分析, 2019(10):34-44.

    FAN Wen. 70 years of development review of the petroleum and chemical industry[J]. Economic Analysis of China Petroleum and Chemical Industry,2019(10):34-44(in Chinese).
    [2] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017, 38(8):172-180.

    JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textile Research,2017,38(8):172-180(in Chinese).
    [3] ZULAKHA Z, IMRAN A, SEONGJUN P, et al. Effect of different iron precursors on the synthesis and photocatalytic activity of Fe-TiO2 nanotubes under visible light[J]. Ceramics International,2020,46(3):3353-3366. doi: 10.1016/j.ceramint.2019.10.045
    [4] MAEDA K, DOMEN K. Photocatalytic water splitting: Recent progress and future challenges[J]. Journal of Physical Chemistry Letters,2010,1(18):2655-2661. doi: 10.1021/jz1007966
    [5] QU L, LANG J, WANG S, et al. Nanospherical composite of WO3 wrapped NaTaO3: Improved photodegradation of tetracycline under visible light irradiation[J]. Applied Surface Science,2016(388):412-419.
    [6] WANG Z, MAO F, HUANG X, et al. Orthogonal test design for preparation of TiO2/graphene composites and study on its photocatalytic activity[J]. Nanomaterials,2018,8(1):271-275.
    [7] WU Z, WANG L. Graphene oxide (GO) doping hexagonal flower-like ZnO as potential enhancer of photocatalytic ability[J]. Materials Letters,2019,234(1):287-290.
    [8] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/g-C3N4 Z型光催化材料的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1): 209-220.

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3 -Ag/ g-C3N4 Z-scheme photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220(in Chinese).
    [9] 崔舒. 氧化锌和二氧化钛材料的制备及其光催化、气敏性能研究[D]. 吉林: 吉林大学, 2019.

    CUI Shu. Fabrication, photocatalytic and gas sensing properties of ZnO and TiO2 materials[D]. Jilin: Jilin University, 2019(in Chinese).
    [10] ZHANG J, DENG S J, LIU S Y, et al. Preparation and photocatalytic activity of Nd doped ZnO nanoparticles[J]. Materials & Processing Report,2014,29(5):262-268.
    [11] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6):129-137.

    ZHAO Yanru, MA Jianzhong, LIU Junli. Research progress on visible-light responding ZnO-based nanocomposite photocatalyst[J]. Journal of Materials Engineering,2017,45(6):129-137(in Chinese).
    [12] HOSSEIN M C, REZA Z, DAVID M T, et al. Nanocrystalline ZnO-SnO2 mixed metal oxide powder: Microstructural study, optical properties, and photocatalytic activity[J]. Journal of Sol-Gel Science and Technology,2017,84(2):274-282. doi: 10.1007/s10971-017-4484-y
    [13] YAO H, YAO Q, WANG H, et al. Optoelectronic properties of MoS2/g-ZnO van der waals heterostructure investigated by first-principles calculations[J]. Journal of Electronic Materials,2020,49(8):4557-4562. doi: 10.1007/s11664-020-07997-z
    [14] CHEN C S, LIU X Y, FANG Q, et al. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight[J]. Vacuum,2020,174:109198. doi: 10.1016/j.vacuum.2020.109198
    [15] 冯雅楠, 甘俊珍, 陈星晖, 等. 形貌和粒度对纳米二氧化铈光催化降解盐基品红的研究[J]. 应用化工, 2019, 48(1):14-17. doi: 10.3969/j.issn.1671-3206.2019.01.004

    FENG Ya’nan, GAN Junzhen, CHEN Xinghui, et al. Study of morphology and particle size of nano-CeO2 on basic fuchsine photocatalytic degradation[J]. Applied Chemical Industry,2019,48(1):14-17(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.01.004
    [16] 陈子坚, 王石语, 吴限. 微波辅助法合成纳米CeO2/ZnO光催化剂及其光催化性能研究[J]. 化工新型材料, 2019, 47(7):190-193.

    CHEN Zijian, WANG Shiyu, WU Xian. Microwave assisted synthesis of nano CeO2/ZnO photocatalyst and its photocatalytic property[J]. New Chemical Materials,2019,47(7):190-193(in Chinese).
    [17] ZHANG W W, GUO H L, SUN H Q, et al. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection[J]. Applied Surface Science,2016,382:128-134. doi: 10.1016/j.apsusc.2016.04.124
    [18] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410.

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese).
    [19] SHEN Y Z, ZHU Z D, WANG X G, et al. Synthesis of Z-scheme g-C3N4/Ag/Ag3PO4 composite for enhanced photocatalytic degradation of phenol and selective oxidation of gaseous isopropanol[J]. Materials Research Bulletin,2018,107:407-415. doi: 10.1016/j.materresbull.2018.08.017
    [20] ZHU L Y, LI H, XIA P F, et al. Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces,2018,10(46):39679-39687.
    [21] WAN S P, ZHONG Q, OU M, et al. Synthesis and characterization of direct Z-scheme Bi2MoO6/ZnIn2S4 composite photocatalyst with enhanced photocatalytic oxidation of NO under visible light[J]. Journal of Materials Science,2017,52:11453-11466. doi: 10.1007/s10853-017-1283-3
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  1026
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 录用日期:  2020-10-30
  • 网络出版日期:  2020-11-12
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回