留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌

刘文军 严建龙 周川 李伟东 周玉敬 邱虹 白华 胡晓兰

刘文军, 严建龙, 周川, 等. 氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌[J]. 复合材料学报, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001
引用本文: 刘文军, 严建龙, 周川, 等. 氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌[J]. 复合材料学报, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001
LIU Wenjun, YAN Jianlong, ZHOU Chuan, et al. Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001
Citation: LIU Wenjun, YAN Jianlong, ZHOU Chuan, et al. Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001

氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌

doi: 10.13801/j.cnki.fhclxb.20200923.001
基金项目: 国家自然科学基金(21774104;21975210);国防基础科研计划(JCKY2017205C016)
详细信息
    通讯作者:

    胡晓兰,博士,副教授,研究方向为高性能树脂基复合材料 E-mail:xlhu@xmu.edu.cn

  • 中图分类号: TB332

Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites

  • 摘要: 采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/EP)复合材料,研究了GO在室温干态及湿热处理后对CF/EP复合材料动态热力学性能和层间剪切性能的影响,并通过微观形貌分析了复合材料的改性机制。结果表明,当GO添加量分别为0.5%和0.8%时,GO-CF/EP复合材料的玻璃化转变温度(Tg)得到明显提高,由CF/EP复合材料的184.4℃分别提高到197.7℃和199.5℃;GO-CF/EP复合材料经湿热处理后,GO-CF/EP复合材料的Tg的保持率比CF/EP略低。GO添加量分别为0.05%和0.1%时,GO-CF/EP复合材料的层间剪切强度由CF/EP复合材料的59.7 MPa分别提高到70.2 MPa和72.2 MPa;GO-CF/EP复合材料进行湿热处理后,GO添加量为0.05%的GO-CF/EP复合材料和GO添加量为0.1%的GO-CF/EP复合材料层间剪切强度较CF/EP复合材料高,但GO-CF/EP复合材料的湿热后层间剪切强度保持率均低于CF/EP复合材料。力学损耗分析表明,GO有效提高了CF与EP基体间的界面黏结作用。微观形貌分析表明,GO的存在可有效分散裂纹能量并使裂纹发生偏转,使GO-CF/EP复合材料抵抗裂纹扩展的能力提高。

     

  • 图  1  氧化石墨烯(GO)的SEM图像(a)和TEM图像(b)

    Figure  1.  SEM image (a) and TEM image (b) of graphene oxide (GO)

    图  2  不同GO含量的GO-碳纤维(CF)/环氧树脂(EP)复合材料的玻璃化转变温度(Tg) (a)、DSC曲线(b)、Tg保持率曲线(c)及力学损耗因子(d)

    Figure  2.  Glass transition temperature (Tg) (a), DSC curves (b), Tg retention rate curves (c) and dynamic loss factor (d) of GO-carbon fiber (CF)/epoxy (EP) composites with different content of GO

    图  3  不同GO含量的GO-CF/EP复合材料的层间剪切强度(a)、层间剪切强度保持率(b)、室温干态时的行程-载荷曲线(c)及湿热处理后的行程-载荷曲线(d)

    Figure  3.  Interlaminar shear strength (a), interlaminar shear strength retention (b), stroke-load curves in normal state (c) and stroke-load curves after hygrothermal treatment (d) of GO-CF/EP composites with different content of GO

    图  4  室温干态时不同GO含量的GO-CF/EP复合材料层间剪切侧面的SEM图像

    Figure  4.  SEM images of side of GO-CF/EP composites with different content of GO after interlaminar shear test in normal state ((a) CF/EP; (b) 0.05% GO-CF/EP; (c) 0.1% GO-CF/EP; (d) 0.2% GO-CF/EP; (e) 0.5% GO-CF/EP; (f) 0.8% GO-CF/EP)

    图  5  室温干态时不同GO含量的GO-CF/EP复合材料层间剪切测试后破坏面的SEM图像

    Figure  5.  SEM images of fracture surface of GO-CF/EP composites with different content of GO after interlaminar shear test in normal state ((a) CF/EP; (b) 0.05% GO-CF/EP; (c) 0.1% GO-CF/EP; (d) 0.2% GO-CF/EP; (e) 0.5% GO-CF/EP; (f) 0.8% GO-CF/EP)

    图  6  湿热处理后不同GO含量的GO-CF/EP复合材料层间剪切侧面的SEM图像

    Figure  6.  SEM images of side of GO-CF/EP composites with different content of GO after hygrothermal treatment and interlaminar shear test ((a) CF/EP; (b) 0.05% GO-CF/EP; (c) 0.1% GO-CF/EP; (d) 0.2% GO-CF/EP; (e) 0.5% GO-CF/EP; (f) 0.8% GO-CF/EP)

    图  7  湿热处理后不同GO含量的GO-CF/EP复合材料层间剪切破坏面的SEM图像

    Figure  7.  SEM images of fracture surface of GO-CF/EP composites with different content of GO after hygrothermal treatment and interlaminar shear test ((a) CF/EP; (b) 0.05% GO-CF/EP; (c) 0.1% GO-CF/EP; (d) 0.2% GO-CF/EP; (e) 0.5% GO-CF/EP; (f) 0.8% GO-CF/EP)

  • [1] 王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):12-28.

    WANG X X, CAO M S. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):12-28(in Chinese).
    [2] 疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):29-40.

    SHU J C, CAO M S. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):29-40(in Chinese).
    [3] LEE D W, VALLADARES L D L S, SEO J W, et al. The structure of graphite oxide: Investigation of its surface chemical groups[J]. Journal of Physical Chemistry B,2010,114(17):5723-5728.
    [4] ADAK N C, CHHETRI S, MURMU N C, et al. Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite[C]//7th National Conference on Processing and Characterization of Materials. Rourkela:IOP Publishing Ltd., 2018, 338: 012015.
    [5] PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science & Technology,2016,135:28-38.
    [6] 胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699.

    HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699(in Chinese).
    [7] BOTELHO E C, PARDINI L C, REZENDE M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. Journal of Materials Science,2006,41(21):7111-7118.
    [8] JEDIDI J, JACQUEMIN F, VAUTRIN A. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):636-645.
    [9] KELLER M W, JELLISON B D, ELLISON T. Moisture effects on the thermal and creep performance of carbon fiber/epoxy composites for structural pipeline repair[J]. Composites Part B: Engineering,2013,45(1):1173-1180.
    [10] COSTA M L. Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials,2005,39(21):1943-1961.
    [11] 李敏, 张宝艳. 改性双马树脂/碳纤维复合材料体系耐湿热性能研究[J]. 热固性树脂, 2006, 21(5):25-27. doi: 10.3969/j.issn.1002-7432.2006.05.008

    LI M, ZHANG B Y. Study on the hydrothermal properties of a modified bismaleimide resin/carbon fiber composites[J]. Thermosetting Resin,2006,21(5):25-27(in Chinese). doi: 10.3969/j.issn.1002-7432.2006.05.008
    [12] KUMAR B G, SINGH R P, NAKAMURA T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation[J]. Journal of Composite Materials,2002,36(24):2713-2733.
    [13] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. American Chemical Society,1958,208:1334-1339.
    [14] American Society for Testing and Materials. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028—07e1[S]. West Conshohocken: ASTM International, 2007.
    [15] 中国国家标准化管理委员会. 聚合物基复合材料短梁剪切强度试验方法: GB/T 30969—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for short-beam shear strength of polymer matrix composite materials: GB/T 30969—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [16] 陈祥宝. 聚合物基复合材料手册(精)[M]. 北京: 化学工业出版社, 2004.

    CHEN X B. Handbook of polymer matrix composites[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [17] RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2010,48(42):7752-7777.
    [18] 胡玉明, 吴良义. 固化剂[M]. 北京: 化学工业出版社, 2004.

    HU Y M, WU L Y. Curing agent[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [19] SHEN X J, PEI X Q, FU S Y, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer,2013,54(3):1234-1242.
    [20] 代少伟, 李伟东, 邱虹, 等. 氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能[J]. 厦门大学学报(自然科学版), 2019, 58(3):324-332.

    DAI S W, LI W D, QIU H, et al. Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites[J]. Journal of Xiamen University (Natural Science),2019,58(3):324-332(in Chinese).
    [21] 巩天琛. 湿热环境对CFRP层板性能影响及机理研究[D]. 天津: 中国民航大学, 2017.

    GONG T C. Influence of hygrothermal environments on properties and mechanism of CFRP laminates[D]. Tianjin: Civil Aviation University of China, 2017(in Chinese).
    [22] 孙健明, 温磊, 李斌太, 等. 湿热对氰酸酯胶粘剂工艺及力学特性影响的研究[J]. 中国胶粘剂, 2017, 26(12):17-20.

    SUN J M, WEN L, LI B T, et al. Study on influences of heat moisture treatment on process and mechanical properties of cyanate ester adhesives[J]. China Adhesives,2017,26(12):17-20(in Chinese).
    [23] XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science,1998,69(2):363-369.
    [24] 吕新颖, 江龙, 闫亮, 等. 碳纤维复合材料湿热性能研究进展[J]. 玻璃钢/复合材料, 2009(3):76-80.

    LV X Y, JIANG L, YAN L, et al. Hydrothermal properties of carbon fiber reinforced plastics[J]. Fiber Reinforced Plastics/Composites,2009(3):76-80(in Chinese).
    [25] 刘淑峰, 程小全, 包建文. 湿热环境对树脂基复合材料性能影响的分析[J]. 高分子材料科学与工程, 2014, 30(9):183-190.

    LIU S F, CHENG X Q, BAO J W. Hygrothermal effects on properties of composite materials[J]. Polymer Materials Science & Engineering,2014,30(9):183-190(in Chinese).
    [26] WANG C C, GE H Y, LIU H S, et al. Properties of carbon fiber and composites modified with different-sized graphene oxide sheets[J]. Polymer Composites,2016,37(9):2719-2726.
    [27] 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 化学工业出版社, 2002.

    GUO M L. Dynamic mechanical analysis of polymer and composites[M]. Beijing: Chemical Industry Publishing House, 2002.
    [28] ZHANG X, FAN X, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces,2012,4(3):1543-1552.
    [29] HAN X, ZHAO Y, SUN J M, et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. New Carbon Materials,2017,32(1):48-55.
    [30] 曲原. CFRP材料湿热老化性能及其尺寸加速效应试验与分析[D]. 大连: 大连理工大学, 2014.

    QU Y. Effect of sample thickness on hygrothermal ageing of expoxy resin and CFRP laminates[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  618
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 录用日期:  2020-08-30
  • 网络出版日期:  2020-09-23
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回