留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏氟乙烯基复合材料的制备及介电性能

王继华 柳军旺 王春锋 王永亮 韩志东

王继华, 柳军旺, 王春锋, 等. 聚偏氟乙烯基复合材料的制备及介电性能[J]. 复合材料学报, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006
引用本文: 王继华, 柳军旺, 王春锋, 等. 聚偏氟乙烯基复合材料的制备及介电性能[J]. 复合材料学报, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006
WANG Jihua, LIU Junwang, WANG Chunfeng, et al. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006
Citation: WANG Jihua, LIU Junwang, WANG Chunfeng, et al. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006

聚偏氟乙烯基复合材料的制备及介电性能

doi: 10.13801/j.cnki.fhclxb.20200922.006
基金项目: 黑龙江省自然科学基金(E2018040)
详细信息
    通讯作者:

    王继华,硕士,高级实验师,研究方向为复合材料的介电性 E-mail:565175949@qq.com

  • 中图分类号: TB332

Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite

  • 摘要: 为有效改善聚合物基复合材料的介电性能,兼顾高介电常数和低填料量同时并存,采用以聚偏氟乙烯(PVDF)为基体树脂,钛酸钡(BT)和石墨烯(GNP)分别为介电填料和导电填料,在BT-GNP/PVDF复合体系内部构建微电容器结构。采用溶液法和热压法制备GNP/PVDF薄膜和BT-GNP/PVDF复合薄膜。结果表明,BT和GNP填料在BT-GNP/PVDF复合薄膜中能够均匀分散,在薄膜内能形成明显的微电容器结构。陶瓷填料BT的引入,使微电容器结构更有利于提高BT-GNP/PVDF复合薄膜的介电常数。BT含量大于50wt%的BT-GNP/PVDF复合薄膜介电常数均不低于GNP/PVDF薄膜。BT含量为50wt%的BT-GNP/PVDF复合薄膜的介电常数高于BT含量分别为35wt%、60wt%和70wt%的BT-GNP/PVDF复合薄膜,最大值约为43,相当于GNP含量为0.8wt%的GNP/PVDF薄膜的1.5倍;BT含量为50wt%的BT-GNP/PVDF复合薄膜损耗角正切均小于其他体系薄膜,最大不超过0.09,最小约为0.02。BT-GNP/PVDF复合薄膜的电导率变化趋势基本一致,没有明显差异。

     

  • 图  1  不同石墨烯(GNP)含量的GNP/聚偏氟乙烯(PVDF)薄膜断面的SEM图像

    Figure  1.  SEM images of cross-section of graphene/polyvinylidene fluoride (GNP/PVDF) films with different GNP content

    图  2  GNP/PVDF薄膜内部结构示意图

    Figure  2.  Diagram of internal structure of GNP/PVDF film

    图  3  不同GNP含量的GNP/PVDF薄膜的介电性能随频率的变化

    Figure  3.  Frequency dependence of dielectric performance of GNP/PVDF films with different GNP content

    图  4  钛酸钡(BT)-GNP/PVDF复合薄膜的微电容器结构示意图

    Figure  4.  Schematic diagram of microcapacitor structure of barium titanate (BT)-GNP/PVDF composite film

    图  5  不同BT含量的BT-GNP/PVDF复合薄膜断面的SEM图像

    Figure  5.  SEM images of cross-section of BT-GNP/PVDF composite films with different BT content

    图  6  不同BT含量的BT-GNP/PVDF复合薄膜的XRD图谱

    Figure  6.  XRD patterns of BT-GNP/PVDF composite films with different BT content

    图  7  不同BT含量的BT-GNP/PVDF复合薄膜的介电性能随频率的变化

    Figure  7.  Frequency dependence of dielectric performance of BT-GNP/PVDF composite films with different BT content

  • [1] HUANG J J, ZHANG Y. Liquid phase sintering of barium titanate ceramics for high energy storage density capacitors[J]. Key Engineering Materials,2008,368-372:40-42.
    [2] 黄炎光, 易鹭. 热老化对干式变压器环氧树脂介电性能的影响[J]. 绝缘材料, 2016, 49(9):53-56.

    HUANG Y G, YI L. Effect of thermal aging on dielectric properties of epoxy resin for dry type transformer[J]. Insulating Materials,2016,49(9):53-56(in Chinese).
    [3] KOUSKSO T, BRUEL P, JAMIL A, et al. Energy storage: Applications and challenges[J]. Solar Energy Materials and Solar Cells,2014,120(1):59-80.
    [4] 于杰, 王继辉, 王钧. 碳纤维/树脂基复合材料导电性能研究[J]. 武汉理工大学学报, 2005, 27(5):24-26. doi: 10.3321/j.issn:1671-4431.2005.05.008

    YU J, WANG J H, WANG J. Study on electrical conductivity of carbon fiber/resin matrix composites[J]. Journal of Wuhan University of Technology,2005,27(5):24-26(in Chinese). doi: 10.3321/j.issn:1671-4431.2005.05.008
    [5] CORREIA T M, MCMILLEN M, ROKOSZ M K, et al. A lead-free and high-energy density ceramic for energy storage applications[J]. Journal of the American Ceramic Society,2013,96(9):699-2702.
    [6] BAI Y, CHENG Z Y, BHARTI V, et al. High dielectric constant ceramic powder polymer composites[J]. Applied Physics Letters,2000,76(25):3804-3806.
    [7] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews,2016,116(7):4260-4317.
    [8] JILLEK W, YUNG W K C. Embedded components in printed circuit boards: A processing technology review[J]. International Journal of Advanced Manufacturing Technology,2005,25(3-4):350-360.
    [9] 倪新亮, 金凡亚, 沈丽如, 等. 等离子体处理碳纤维/树脂复合材料[J]. 复合材料学报, 2015, 32(3):721-727.

    NI X L, JIN F Y, SHEN L R, et al. Plasma treatment of carbon fiber/resin composites[J]. Acta Materiae Composite Sinica,2015,32(3):721-727(in Chinese).
    [10] ZUO Z H, ZHAN Q F, CHEN B, et al. Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes[J]. Chinese Physics B,2016,25(8):087702.
    [11] SHANG J, ZHANG Y, YU L, et al. Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer[J]. Journal of Materials Chemistry A,2013,1(3):884-890.
    [12] ZHAO X, ZHAO J, CAO J P, et al. Tuning the dielectric properties of polystyrene/poly(vinylidene fluoride) blends by selectively localizing carbon black nanoparticles[J]. The Journal of Physical Chemistry B,2013,117(8):2505-2515.
    [13] CHON J, YE S, CHA K J, et al. High-κ dielectric sol-gel hybrid materials containing barium titanate nanoparticles[J]. Chemistry of Materials,2010,22(19):5445-5452.
    [14] LEE K H, KAO J, PARIZI S S, et al. Dielectric properties of barium titanate supramolecular nanocomposites[J]. Nanoscale,2014,6(7):3526-3531.
    [15] ZHU W, MA J, NAN X, et al. Study on dispersion of reduced graphene oxide on physical performance of polyvinylidene fluoride composites by Hansen solubility parameters[J]. Colloid & Polymer Science,2019,297(2):213-224.
    [16] RAULO A, SUIN S, PARIA S, et al. Expanded graphite (EG) as a potential filler in the reduction of percolation threshold of multiwall carbon nanotubes (MWCNT) in the PMMA/HDPE/EG/MWCNT nanocomposites[J]. Polymer Composites,2016,37(7):2070-2082.
    [17] IVONNE O, MOHAMMAD A, UTTANDARAMAN S. Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties[J]. Polymer,2017,114:122-134.
    [18] XIANG L, TIAN J W, HU P H, et al. Improved dielectric performance of polypropylene/multiwalled carbon nanotube nanocomposites by solid-phase orientation[J]. Journal of Applied Polymer Science,2015,133(3):42893.
    [19] POORALI M S, BAGHERI-MOHAGHEGHI M M. Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: Optimization of the structural properties and tuning of energy band gap[J]. Journal of Materials Science: Materials in Electronics,2016,27(1):260-271.
    [20] RAJI M, ESSABIR H, RODRIGUE D, et al. Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites[J]. Polymer Composites,2018,39(8):2932-2941.
    [21] LEE J, LIM S. Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide[J]. Journal of Industrial and Engineering Chemistry,2018,67:478-485.
    [22] ALHUSAIKI-ALGHAMDI H M. Thermal and electrical properties of graphene incorporated into polyvinylidene fluoride/polymethyl methacrylate nanocomposites[J]. Polymer Composites,2016,38:246-253.
    [23] LV D Y, ZUO R Z. Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth[J]. Journal of Alloys and Compounds,2013,560:62-66.
    [24] CHOI S H, KIM I D, HONG J M, et al. Effect of the dispersibility of BaTiO3 nanoparticles in BaTiO3/polyimide composites on the dielectric properties[J]. Materials Letters,2007,61(11-12):2478-2481.
    [25] GUAN S S, LI H, ZHAO S G, et al. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3[J]. Composites Science and Technology,2018,158(12):79-85.
    [26] 钟少龙, 党智敏. 高储能密度低损耗介电高分子功能复合材料的研究进展[J]. 绝缘材料, 2016, 49(12):13-18.

    ZHONG S L, DANG Z M. Research progress of dielectric polymer functional composites with high energy storage density and low loss[J]. Insulating Materials,2016,49(12):13-18(in Chinese).
    [27] SHI J, FAN H Q, LIU X, et al. Bi deficiencies induced high permittivity in lead-free BNBT-BST high-temperature dielectrics[J]. Journal of Alloys and Compounds,2015,627:463-467.
    [28] LIN J Q, CHEN G R, YANG W L, et al. New potassium sodium niobate/poly(vinylidene fluoride) functional composite films with high dielectric permittivity[J]. Journal of Polymer Research,2016,23(8):152.
    [29] WANG X, LI Z W. Dilelectric properties of CB@TiO2/BaTiO3/epoxy composites[J]. Journal of Materials Science Materials in Electronics,2017,28:6071-6078.
    [30] LUO S, YU S, SUN R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: Toward high dielectric constant and suppressed loss[J]. ACSApplied Materials & Interfaces,2014,6(1):176-182.
    [31] LI Y M, YANG W H, DING S J, et al. Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core-shell structured BaTiO3@graphene oxide hybrids[J]. Journal of Materials Science Materials in Electronics,2018,29:1082-1092.
    [32] 沈烨, 赵亮, 赵中国, 等. 微注条件下PP/PVDF共混物结构与介电性能的研究[J]. 塑料工业, 2019, 47(7):71-76. doi: 10.3969/j.issn.1005-5770.2019.07.018

    SHEN Y, ZHAO L, ZHAO Z G, et al. Study on the structure and dielectric properties of PP/PVDF blends under microinjection[J]. Plastics Industry,2019,47(7):71-76(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.07.018
    [33] 王建国. 分形及渗流理论在材料科学中的应用[J]. 深圳大学学报(理工版), 1990, 7(1-2):86-96.

    WANG J G. Application of fractal and percolation theory in materials science[J]. Journal of Shenzhen University (Science and Engineering),1990,7(1-2):86-96(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  447
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 录用日期:  2020-09-07
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回