留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧树脂灌封结构固化行为数值模拟和工艺优化

李小阳 康峻铭 朱子钊 杨鹏 王继辉 丁安心

李小阳, 康峻铭, 朱子钊, 等. 环氧树脂灌封结构固化行为数值模拟和工艺优化[J]. 复合材料学报, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001
引用本文: 李小阳, 康峻铭, 朱子钊, 等. 环氧树脂灌封结构固化行为数值模拟和工艺优化[J]. 复合材料学报, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001
LI Xiaoyang, KANG Junming, ZHU Zizhao, et al. Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001
Citation: LI Xiaoyang, KANG Junming, ZHU Zizhao, et al. Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001

环氧树脂灌封结构固化行为数值模拟和工艺优化

doi: 10.13801/j.cnki.fhclxb.20200922.001
基金项目: 国家自然科学基金(11902231);中央高校基本科研业务费专项资金(WUT203201006;WUT203101002)
详细信息
    通讯作者:

    丁安心,博士,教授,研究方向为聚合物和聚合物基复合材料制备与设计 E-mail:axding@whut.edu.cn

  • 中图分类号: TB334

Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin

  • 摘要: 依据实验测试获得E51环氧树脂的固化动力学和力学性能参数,针对特定尺寸的E51树脂灌封结构,将数值模拟与实验方法相结合,优化树脂的常温固化工艺为“二阶段”中高温固化工艺。首先采用数值模拟方法,分别比较第一段保温平台和第二段保温平台不同温度幅值和固化时间对结构内部的温度、固化度和应变的影响,优选固化工艺参数;然后基于光纤布拉格光栅(FBG)监测技术,对优选和原始固化工艺曲线的结构内部的固化温度和应变进行实时在线监测,结果表明了数值模拟的可行性,显示了通过数值仿真优选固化工艺曲线的可靠性;最后实验测试比较优选工艺和原始工艺曲线下制造的E51树脂浇注体性能,结果显示优选工艺制造的树脂浇注体的拉伸强度、压缩屈服强度、弯曲强度和冲击强度相比原始工艺制作的试样分别提高了3.9%、1.5%、14.5%和16.2%。

     

  • 图  1  E51树脂灌封结构的有限元模型

    Figure  1.  Finite element model of encapsulation structure composed of E51 resin

    图  2  E51树脂的固化工艺曲线优化流程图

    Figure  2.  Flowchart of optimization on cure cycle for E51 resin

    图  3  在不同固化工艺下(第一段30℃/40℃/50℃-24 h+第二段70℃-6 h)E51结构监测点的相关参数变化:(a) 温度;(b) 固化度;(c) 应变

    Figure  3.  Evolution of pertinent parameters in the monitored position for structures composed of E51 resin under different cure cycles (30℃/40℃/50℃-24 h in the first dwelling stage +70℃-6 h in the second dwelling stage): (a) Temperature; (b) Degree of cure; (c) Strain

    图  4  在不同固化工艺下(第一段30℃-3/6/12/24 h+第二段70℃-6 h)E51结构监测点的相关参数变化:(a) 温度;(b) 固化度;(c) 应变

    Figure  4.  Evolution of pertinent parameters in the monitored position for structures composed of E51 resin under different cure cycles ( 30℃-3/6/12/24 h in the first dwelling stage +70℃-6 h in the second dwelling stage) : (a) Temperature; (b) Degree of cure; (c) Strain

    图  5  在不同固化工艺下(第一段30℃-24 h+第二段50/60/70/80℃-6 h)E51结构监测点的相关参数变化:(a) 温度;(b) 固化度;(c) 应变

    Figure  5.  Evolution of pertinent parameters in the monitored position for structures composed of E51 resin under different cure cycles ( 30℃-24 h in the first dwelling stage +50/60/70/80℃-6 h in the second dwelling stage): (a) Temperature; (b) Degree of cure; (c) Strain

    图  6  在不同固化工艺下(第一段30℃-24 h+第二段70℃-2/3/4/5/6 h)E51结构监测点的相关参数变化:(a) 温度;(b) 固化度;(c) 应变

    Figure  6.  Evolution of pertinent parameters in the monitored position for structures composed of E51 resin under different cure cycles ( 30℃-24 h in the first dwelling stage +70℃-2/3/4/5/6 h in the second dwelling stage): (a) Temperature; (b) Degree of cure; (c) Strain

    图  7  E51树脂结构监测点在原始固化工艺下的实验曲线和模拟曲线

    Figure  7.  Experimentally measured and numerically simulated strain and temperature curves for monitored point of structures composed of E51 resin under original cure cycle

    图  8  E51树脂结构监测点在原始固化工艺下的实验曲线和模拟曲线

    Figure  8.  Experimentally measured and numerically simulated strain and temperature curves for monitored point of structures composed of E51 resin under optimized cure cycle ((a) Experimental results; (b) Temperature comparison between experimental and numerical results; (c) Strain comparison between experimental and numerical results)

    图  9  固化工艺优化前后的E51树脂浇注体性能对比:(a)拉升强度和压缩强度;(b)弯曲强度和冲击强度

    Figure  9.  Comparison of properties for E51 resin casting body manufactured with optimized and original cure cycles: (a) Tensile and compressive yield strength; (b) Flexural strength and impact strength

    表  1  E51树脂固化动力学和热物理性能参数

    Table  1.   Parameters for the curing kinetic model and thermophysical properties of E51 resin

    ParameterValue
    A1/ S−1 9.64×106
    A2/ S−1 1.36×103
    ΔE1/(J·mol−1) 6.69×104
    ΔE2/(J·mol−1) 4.12×104
    m 0.3
    n 1.7
    D 50
    αc0 −2.40
    αcT 0.01
    ΔH/(J·g−1) 402.7
    ρ0/(kg·m−3) 1108.9
    ρ1/(kg·m−3) 1168.7
    k0/(W·(m·K)−1) 0.16
    k1/(W·(m·K)−1) 0.22
    Cp0/(J·(kg·K)−1) 1763
    Cp1/(J·(kg·K)−1) 1171
    Notes: A1 and A2—Pre-exponential factors; ΔE1 and ΔE2—Activation energies; m and n—Exponential constants; D—Diffusion factor; αc0 and αcT—Fitting parameters; ΔH—Total heat quantity of heat release after the resin is fully cured; ρ0 and ρ1—Densities of completely uncured and cured resin; k0 and k1—Thermal conductivities of completely uncured and cured resin; Cp0 and Cp1—Specific heat capacities of completely uncured and cured resin.
    下载: 导出CSV

    表  2  E51树脂固化力学性能参数

    Table  2.   Parameters for the curing mechanical properties of E51 resin

    ParameterValue
    Tg0/℃ −47.78
    Tg1/℃ 84.03
    l 0.49
    α 0.48
    T1/K −5
    T2/K 5
    T3/K 15
    T4/K 50
    G1/Pa 1.35×106
    G2/Pa 4.25×108
    G3/Pa 7.65×108
    G4/Pa 1.045×109
    Eche 2.0×10−3
    Ethe/K−1 32.0×10−6
    Notes: Tg0 and Tg1—Glass transition temperatures of completely uncured and cured resin; l—Fitting parameter; α—Degree of cure; T1, T2, T3 and T4—Fitting values of temperature; G1, G2, G3 and G4—Fitting values of shear moduli; Eche and Ethe — Coefficients of chemical shrinkage and thermal expansion.
    下载: 导出CSV
  • [1] DING A, LI S, SUN J, et al. A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws[J]. Journal of Reinforced Plastics and Composites,2016,35(10):807-823. doi: 10.1177/0731684416629764
    [2] DING A, LI S, SUN J, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures,2016,136(Supplement C):34-43.
    [3] ERSOY N, TUGUTLU M. Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite[J]. Polymer Engineering & Science,2010,50(1):84-92.
    [4] LI X, WANG J, LI S, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures,2020:112822.
    [5] CHEN J, WANG J, LI X, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures,2020,242:112168. doi: 10.1016/j.compstruct.2020.112168
    [6] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):522-529. doi: 10.1016/j.compositesa.2005.05.019
    [7] DING A, LI S, WANG J, et al. A new analytical solution for spring-in of curved composite parts[J]. Composites Science and Technology,2017,142:30-40. doi: 10.1016/j.compscitech.2017.01.024
    [8] DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [9] 丁安心, 王继辉, 倪爱清, 等. 热固性树脂基复合材料固化变形解析预测研究进展[J]. 复合材料学报, 2018, 35(6):1361-1376.

    DING A X, WANG J H, NI A Q, et al. A review of analytical prediction of cure-induced distortions in thermoset composites[J]. Acta Materiae Compositae Sinica,2018,35(6):1361-1376(in Chinese).
    [10] 丁安心, 李书欣, 倪爱清, 王继辉. 热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J]. 复合材料学报, 2017, 34(3):471-485.

    DING A X, LI S X, NI A Q, et al. A review of analytical prediction of cure-induced distortions and residual stress in thermoset composites[J]. Acta Materiae Compositae Sinica,2017,34(3):471-485(in Chinese).
    [11] 元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015(01):167-175.

    YUAN Z Y, WANG Y J, ZHANG Y, et al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compositae Sinica,2015(01):167-175(in Chinese).
    [12] DING A, WANG J, LI S. Understanding process-induced spring-in of L-shaped composite parts using analytical solution[J]. Composite Structures,2020,250:112629. doi: 10.1016/j.compstruct.2020.112629
    [13] DING A, WANG J, NI A, et al. A new analytical solution for cure-induced spring-in of L-shaped composite parts[J]. Composites Science and Technology,2019,171:1-12. doi: 10.1016/j.compscitech.2018.12.004
    [14] JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures [D]. The University of British Columbia, 1998.
    [15] WEILAND J S, HARTMANN M P, HINTERHÖLZL R M. Cure simulation with resistively in situ heated CFRP molds: Implementation and validation[J]. Composites Part A: Applied Science and Manufacturing,2016,80:171-181. doi: 10.1016/j.compositesa.2015.10.020
    [16] ZOCHER M A, GROVES S E, ALLEN D H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[J]. International Journal for Numerical Methods in Engineering,1997,40(12):2267-2288. doi: 10.1002/(SICI)1097-0207(19970630)40:12<2267::AID-NME156>3.0.CO;2-P
    [17] DING A, LI S, SUN J, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures,2016,136:34-43. doi: 10.1016/j.compstruct.2015.09.014
    [18] BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5):626-660. doi: 10.1177/002199839202600502
    [19] MAGNUS S J, ANDERS H J. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science and Manufacturing,2004,35(6):711-721. doi: 10.1016/j.compositesa.2004.02.005
    [20] GARSTKA T, ERSOY N, POTTER K D, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composites Part A: Applied Science and Manufacturing,2007,38(12):2517-2526. doi: 10.1016/j.compositesa.2007.07.018
    [21] KRAVCHENKO O G, KRAVCHENKO S G, CASARES A, et al. Digital image correlation measurement of resin chemical and thermal shrinkage after gelation[J]. Journal Materials Science,2015,50(15):5244-5252. doi: 10.1007/s10853-015-9072-3
    [22] YUAN Z, ZHANG B, YANG G, et al. Multi-scale modeling of curing residual stresses in composite with random fiber distribution into consideration[J]. Applied Composite Materials,2019,26(3):983-999.
    [23] BENAVENTE M, MARCIN L, COURTOIS A, et al. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing[J]. Composites Part A: Applied Science and Manufacturing,2018,107:205-216.
    [24] KHOUN L, CENTEA T, HUBERT P. Characterization methodology of thermoset resins for the processing of composite materials—Case study: CYCOM 890RTM epoxy resin[J]. Journal of Composite Materials,2010,44(11):1397-1415. doi: 10.1177/0021998309353960
    [25] 漆乐俊, 郭永进, 章翼, 等. 环氧浇注干式变压器绕组固化过程数值模拟与优化[J]. 变压器, 2014, 51(2):38-40.

    QI L J, GUO Y J, ZHANG Y, et al. Numerical simulation and optimization of epoxy resin curing process for dry-type transformer winding[J]. Transformer,2014,51(2):38-40(in Chinese).
    [26] TAO Q, PINTER G, ANTRETTER T, et al. Model free kinetics coupled with finite element method for curing simulation of thermosetting epoxy resins[J]. Journal of Applied Polymer Science,2018,135(27):46408. doi: 10.1002/app.46408
    [27] RABEARISON N, JOCHUM C, GRANDIDIER J C. A FEM coupling model for properties prediction during the curing of an epoxy matrix[J]. Computational Materials Science,2009,45(3):715-724. doi: 10.1016/j.commatsci.2008.11.007
    [28] 康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG J M, SUN L L, WANG J H, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [29] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008 [S], Beijing: China Standards Press, 2008(in Chinese).
    [30] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics. Determination of izod impact strength: GB/T 1843—2008 [S], Beijing: China Standards Press, 2008(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  470
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2020-08-24
  • 录用日期:  2020-08-29
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回