留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料褶皱夹芯结构研究进展

邓云飞 曾宪智 周翔 李向前 熊健

邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12): 2966-2983. doi: 10.13801/j.cnki.fhclxb.20200903.001
引用本文: 邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12): 2966-2983. doi: 10.13801/j.cnki.fhclxb.20200903.001
DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the composite sandwich structure with foldcore[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2966-2983. doi: 10.13801/j.cnki.fhclxb.20200903.001
Citation: DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the composite sandwich structure with foldcore[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2966-2983. doi: 10.13801/j.cnki.fhclxb.20200903.001

复合材料褶皱夹芯结构研究进展

doi: 10.13801/j.cnki.fhclxb.20200903.001
基金项目: 国家自然科学基金 (11702317;11572100);航空科学基金 (2018ZF67011);中央高校基本科研业务费资(3122019076)
详细信息
    通讯作者:

    熊健,博士,教授,博士生导师,研究方向为复合材料结构设计与性能评价 E-mail:jx@hit.edu.cn

  • 中图分类号: TG156;V214.8;TB33

Research progress for the composite sandwich structure with foldcore

  • 摘要: 复合材料褶皱夹芯结构是通过二维材料折叠而成的三维周期性空间结构,作为一种新型的夹芯结构,具有轻质、高比强度、高比刚度、芯子空间贯通及多功能潜力等优势。本文结合飞行器结构轻量化和多功能化要求,对近年来复合材料褶皱夹芯结构的主要研究成果与特点进行了总结和分析。阐述了复合材料褶皱夹芯结构的构型优化方案及制备工艺,重点归纳了复合材料褶皱夹芯结构的力学性能及多功能的研究现状,包括结构的准静态力学性能、抗冲击性能及隔声、热防护、隐身性能等。基于国内外研究现状,对未来复合材料褶皱夹芯结构的重点研究方向进行了展望。

     

  • 图  1  褶皱夹芯结构

    Figure  1.  Sandwich structure with foldcore

    图  2  通道结构[5]

    Figure  2.  Channel structure[5]

    图  3  褶皱芯子几何参数[9]

    Figure  3.  Geometric parameters of foldcore[9]

    图  4  褶皱芯子构型[10-11]

    Figure  4.  Configurations of foldcores[10-11]

    图  5  褶皱芯子折叠工艺[12]

    Figure  5.  Folding technology of core[12]

    图  6  V型褶皱芯子设计方法[14]

    Figure  6.  Design method of V-type foldcore[14]

    图  7  缩进式V型褶皱芯子[14]

    Figure  7.  Indented V-type foldcore[14]

    图  8  改进V型褶皱芯子[17]

    Figure  8.  Improvement of V-type foldcore[17]

    图  9  碳纤维橄榄型芯子[10, 18]

    Figure  9.  Carbon fiber reinforced olive type foldcore[10, 18]

    图  10  S型褶皱夹芯结构[22]

    Figure  10.  Sandwich structure with S-type foldcore[22]

    图  11  S型褶皱芯子与V型褶皱芯子屈曲破坏应力对比[23]

    Figure  11.  Comparisons on buckling failure stress between S-type and V-type foldcores[23]

    图  12  多种型面的褶皱芯子[9, 25]

    Figure  12.  Foldcores of various configurations[9,25]

    图  13  分割型模具操作流程[23]

    Figure  13.  Operation process of split mold[23]

    图  14  连续折叠与弯曲技术[10, 27]

    Figure  14.  Continuous creasing and bending technique[10, 27]

    图  15  褶皱夹芯圆筒结构的成型[28]

    Figure  15.  Fabrication of sandwich cylinder structure with foldcore[28]

    图  16  缠绕-铺贴工艺[30]

    Figure  16.  Filament-winding and lay-up placing techniques[30]

    图  17  褶皱结构的整体坐标系[32]

    Figure  17.  Illustration of foldcore sandwich structures[32]

    图  18  V型褶皱结构与蜂窝结构性能对比

    Figure  18.  Comparisons of performance between sandwich structures with V-type foldcore and honeycomb core

    图  19  V型褶皱夹芯结构与其它夹芯结构的抗冲击性能对比

    Figure  19.  Comparisons of impact resistance between sandwich structure with V-type foldcore and other sandwich structures

    图  20  芯子Z向平压等效过程[9]

    Figure  20.  Equivalent process of Z-direction flat pressing of core[9]

    图  21  V型褶皱芯子模量的理论值与数值模拟值[10]

    Figure  21.  Theoretical and simulated modulus of V-type foldcore[10]

    图  22  S型碳纤维褶皱夹芯结构(黑点部分)与其它夹芯结构性能对比[23]

    Figure  22.  Comparison of properties between carbon fiber sandwich structures with S-type foldcore (black spot) and other sandwich structures[23]

    图  23  V型褶皱芯子对信号的反射[81]

    Figure  23.  Reflection of signal by V-type foledcore[81]

    表  1  不同构型V型和S型褶皱芯子的参数

    Table  1.   Geometric parameters of different models for V-type and S-type foldcores

    V-type foldcoreS-type foldcoreh/mml/mmθ/(°)β/(°)
    ModelRelative density/%Strength/MPaModelRelative density/%Strength/MPa
    CU1 3.69 2.50 CH1 3.56 1.51 14 20 60 60
    CU2 2.79 1.81 CH2 2.69 1.13 19 20 60 60
    CU3 2.25 1.33 CH3 2.17 0.90 24 20 60 60
    CU4 2.79 2.13 CH4 2.69 1.41 19 15 60 60
    CU5 2.79 1.55 CH5 2.69 0.94 19 25 60 60
    CU6 2.56 2.78 CH6 2.38 1.29 19 20 50 60
    CU7 2.07 1.24 CH7 2.04 1.02 19 20 70 60
    CU8 1.76 1.02 CH8 1.71 0.72 19 20 60 50
    CU9 3.14 3.06 CH9 3.01 1.61 19 20 60 70
    下载: 导出CSV

    表  2  V型褶皱夹芯结构模量预测

    Table  2.   Modulus prediction of sandwich structure with V-type folecore

    ConfigurationFlat compression modulus EZ/MPaShear modulus GZX/MPaShear modulus GZY/MPa
    TheoreticalNumerical simulationDifference/%TheoreticalNumerical simulationDifference/%TheoreticalNumerical simulationDifference/%
    1 1309 1281 2.19 1309 1151 12.12 566 465 17.93
    2 616 581 5.79 616 540 12.37 266 247 7.25
    3 698 662 5.22 698 612 12.35 302 272 9.95
    4 1164 1130 2.86 1164 1022 12.20 503 418 16.94
    5 873 836 4.23 873 766 12.27 377 326 13.69
    下载: 导出CSV
  • [1] 王家伟, 朱永祥, 韦成华, 等. Nomex蜂窝夹层结构弯曲刚度温度相关性的力学建模[J]. 复合材料学报, 2020, 37(2):376-381.

    WANG Jiawei, ZHU Yongxiang, WEI Chenghua, et al. Mechanical modeling on the bending stiffness temperature dependence of Nomex honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica,2020,37(2):376-381(in Chinese).
    [2] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low velocity impact performance of aluminium honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [3] SILVERBERG J L, EVANS A A, MELEOD L, et al. Using origami design principles to fold reprogrammable mechanical meta materials[J]. Science,2014,345:647-650.
    [4] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science,2014,345:644-646.
    [5] FISCHER S. Aluminum fold cores for sandwich structure application: Mechanical properties and FE-simulation[J]. Thin Walled Structures,2015,90:31-41.
    [6] FEI L J, SUJAN D. Origami theory and its applications: A literature review[J]. World Academy of Science, Engineering and Technology,2013,73:1331-1335.
    [7] GRZESCHIK M. Performance of foldcores mechanical properties and testing[C]//Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. USA, 2013: 1-6.
    [8] FISCHER S, DRECHSLER K, KILCHERT S, et al. Mechanical tests for foldcore base material properties[J]. Compo-sites Part A: Applied Science & Manufacturing,2009,40:1941-1952.
    [9] 任永锋. 褶皱夹芯结构的基本力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    REN Yongfeng. Study on basic mechanical properties of foldcore sandwich structures[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [10] 丛立新. 复合材料褶皱夹芯结构的制备及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    CONG Lixin. Fabrication and mechanical behavior of composite sandwich structure with folded core[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [11] HEIMBS S, MEHRENS T, MIDDENDORF P, et al. Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels [C]. 6th European LS-DYNA Users’ Conference, Gothenburg, Sweden, 2007: 181-190.
    [12] ABRATE S, CASTANIE B, RAJAPAKSE Y D S. Dynamic failure of composite and sandwich structures, solid mechanics and its applications[M]. Berlin: Springer Science Business Media Dordrecht, 2013.
    [13] GATTAS J M, WU W, YOU Z. Miura-base rigid origami: Parameterizations of first level derivative and piecewise geometries[J]. Journal of Mechanical Design,2013,135(11):111011.
    [14] GATTAS J M, YOU Z. Quasi-static impact of indented foldcores[J]. International Journal of Impact Engineering,2014,73:15-29.
    [15] JOHNSON A F. Novel hybrid structural core sandwich materials for aircraft applications[C] //11th Euro-Japanese Symposium on Composite Materials, Porto, Portugal, 2008.
    [16] SUN Y G, LI Y X. Prediction and experiment on the compressive property of the sandwich structure with a chevron carbon fibre reinforced composite folded core[J]. Compo-sites Science and Technology,2017,150:95-101.
    [17] 丛立新, 孙雨果, 高亮, 等. 改进V-型复合材料褶皱夹芯结构的制备及压缩性能[J]. 复合材料学报, 2014, 31(2):456-464.

    CONG Lixin, SUN Yuguo, GAO Liang, et al. Preparation and compression performance of an improved V-type folded GFRP sandwich structure[J]. Acta Material Compo-site Linica,2014,31(2):456-464(in Chinese).
    [18] 王涛. 新型褶皱夹芯结构的设计及其力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Tao. Design and mechanical properties analysis of new folds sandwich structure[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [19] STURM R, FISCHER S. Virtual design method for controlled failure in foldcore sandwich panels[J]. Applied Composite Materials,2015,22(6):791-803.
    [20] GATTAS J M, YOU Z. The behaviour of curved-crease foldcores under low velocity impact loads[J]. International Journal of Solids and Structures,2015,53:80-91.
    [21] ZHOU X, WANG H, YOU Z. Mechanical properties of miura-based folded cores under quasi-static loads[J]. Thin Walled Structures,2014,82:296-310.
    [22] MUHS F, MIDDENDORF P. Mechanical performance of curved sandwich foldcores[C]. SAMPE Europe 2017-Society for the Advancement of Material and Process Engineering, Stuttgart, 2018.
    [23] DU Y D, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology,2019:94-105.
    [24] 杜昀桐, 熊健. 复合材料S型褶皱夹芯结构制备及平压性能测试 [EB/OL]. 北京: 中国科技论文在线 [2017-05-04]. http://www.paper.edu.cn/releasepaper/content/201705-305.

    DU Yuntong, XIONG jian. Fabrication and test in compression of composite S-foldcore sandwich[EB/OL]. Beijing: Sciencepaper Online [2017-05-04]. http://www.paper.edu.cn/releasepaper/content/201705-305(in Chinese).
    [25] HAHNEL F, WOLF K, HAUFFE A, et al. Wedge-shaped folded sandwich cores for aircraft applications: From design and manufacturing process to experimental structure validation[J]. CEAS Aeronautical Journal,2011,2(1-4):203-212.
    [26] 蔡克乾. 复合材料折叠夹芯结构制备及力学性能研究[D]. 大连: 大连理工大学, 2015.

    CAI Keqian. Manufacture and mechanical behavior study of composite folded core sandwich structure [D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [27] ELSAYED E, BASILY B B. A continuous folding process for sheet materials[J]. International Journal of Materials and Product Technology,2004,21(1):217-238.
    [28] 李炎笑. 褶皱夹芯壳结构的设计制备及其力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LI Yanxiao. The design, manufacturing and mechanical properties for foldcore cylinder structures[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [29] LIU B, SUN Y G, et al. Fabrication and compressive behavior of carbon fiber reinforced cylindrical foldcore sandwich structure[J]. Composites Part A: Applied Science & Manufacturing,2019,118:9-19.
    [30] LI W X, ZHENG Q, FAN H, et al. Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders[J]. Engineering,2020,6(2):196-204.
    [31] LI W X, SUN F F, WEI W Y, et al. Fabrication and testing of composite corrugated core sandwich cylinder[J]. Compo-sites Science and Technology,2018,156:127-135.
    [32] HEIMAS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures,2009,92(6):1485-1497.
    [33] HEIMAS S, MIDDENDORF P, HAMPF C, et al. Aircraft sandwich structures with folded core under impact load[C]. 8th International Conference on Sandwich Structures, Porto, 2008.
    [34] HEIMAS S, CICHOSZ J, KILCHERT S, et al. Sandwich panels with cellular cores made of folded composite material: Mechanical behaviour and impact performance[C]. 17th International Conference on Composite Materials, Edin-burgh, UK, 2009:1-10.
    [35] ZAND S, ZHOU X, WANG H, et al. Foldcores made of thermoplastic materials: Experimental study and finite element analysis[J]. Thin-Walled Structures,2016,100:170-179.
    [36] 张延昌, 王自力, 张世联, 等. 基于折叠式夹层板船体结构耐撞性设计[J]. 船舶工程, 2009, 31:1-5. doi: 10.3969/j.issn.1000-6982.2009.03.001

    ZHANG Yanchang, WANG Zili, ZHANG Shilian, et al. Hull structural crashworthy design based on folding sandwich panel[J]. Ship Engineering,2009,31:1-5(in Chinese). doi: 10.3969/j.issn.1000-6982.2009.03.001
    [37] DEMIRCIOGLU T K, BALIKOGLU F İ, et al. Experimental investigation on low velocity impact response of wood skinned sandwich composites with different core configurations[J]. Materials Today Communications,2018,17:31-39.
    [38] WANG H X, RAMAKRISHNAN K R, SHANKAR K. Experimental study of the medium velocity impact response of sandwich panels with different cores[J]. Materials & Design,2016,99:68-82.
    [39] HE W T, LIU J X, WANG S Q, et al. Low velocity impact response and post impact flexural behavior of composite sandwich structures with corrugated cores[J]. Composite Structures,2018,189:37-53.
    [40] BALABANA A C, TEEA K F, TOYGARB M E. Low velocity impact behaviour of sandwich composite structures with E-glass/epoxy facesheets and PVC foam[J]. Procedia Structural Integrity,2019,18:577-585.
    [41] 刘姗姗, 刘亚军, 张英杰, 等. 碳纤维-泡沫铝夹芯板低速冲击响应[J]. 高压物理学报, 2020, 34(3):1-10. doi: 10.11858/gywlxb.20200516

    LIU Shanshan, LIU Yajun, ZHANG Yingjie, et al. Low velocity impact response of carbon fiber-aluminum foam sandwich plate[J]. Chinese Journal of High Pressure Physics,2020,34(3):1-10(in Chinese). doi: 10.11858/gywlxb.20200516
    [42] ZANG X Y, XU F, ZANG Y Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low velocity impact[J]. Composite Structures,2020,236:111882.
    [43] XIANG J D, YUAN T Y, ZU Z, et al. Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts[J]. Materials Today Communications,2020,25:101319.
    [44] 姜开宇, 王城南, 蔡克乾, 等. 结构参数对树脂基纤维编织复合材料折叠夹芯结构力学性能的影响[J]. 高分子材料科学与工程, 2017, 33(8):114-120.

    JIANG Kaiyu, WANG Chengnan, CAI Keqian, et al. Influence of structure parameters on mechanical properties of resin matrix braided composite folded sandwich structure[J]. Polymeric Materials Science and Engineering,2017,33(8):114-120(in Chinese).
    [45] DOGAN F, HADAVINIA H, DONCHE T. Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact[J]. Central European Journal of Engineering,2012,2(4):612-626.
    [46] 周华志, 王志瑾. M-型褶皱芯材夹层板吸能性能研究[J]. 航空学报, 2016, 37(2):579-587.

    ZHOU Huazhi, WANG Zhijin. Analysis of energy absorption capability of M-type folded core sandwich structure[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):579-587(in Chinese).
    [47] XIANG X M, YOU Z, LU G. Rectangular sandwich plates with Miura-ori folded core under quasi-static loadings[J]. Composite Structures,2018,195:359-374.
    [48] EIDINI M. Zigzag-base folded sheet cellular mechanical metamaterials[J]. Extreme Mechanics Letters,2016,6:96-102.
    [49] BASILY B B, ELSAYED E A. Dynamic axial crushing of multilayer core structures of folded Chevron patterns[J]. International Journal of J Materials & Product Technology,2004,21:169-185.
    [50] KLAUS M, REIMERDES H G, GUPTA N K. Experimental and numerical investigations of residual strength after impact of sandwich panels[J]. International Journal of Impact Engineering,2012,44:50-58.
    [51] HEIMBS S, KILCHERT S, FISCHER S, et al. Sandwich structures with folded core: Mechanical modeling and impact simulations[C]// Sampe Europe International Conference (SEICO-09). 2009: 324-331.
    [52] HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Experimental and numerical analysis of composite folded sandwich core structures under compression[J]. Applied Composite Materials,2007,14(5-6):363-377.
    [53] 张鹏飞, 金海波. 基于低能量冲击损伤阻抗的复合材料薄壁结构铺层顺序设计[J]. 复合材料学报, 2014, 31(1):18-25. doi: 10.3969/j.issn.1000-3851.2014.01.003

    ZHANG Pengfei, JIN Haibo. Stacking sequence design of composite thin walled structure based on low energy impact damage resistance[J]. Acta Materiae Compositae Sinica,2014,31(1):18-25(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.003
    [54] HEIMBS S. Virtual testing of sandwich core structures using dynamic finite element simulations[J]. Computational Materials Science,2009,45(2):205-216.
    [55] BARANGER E, GUIDAULT P A, CLUZEL C. Numerical modeling of the geometrical defects of an origami-like sandwich core[J]. Composite Structures,2011,93(10):2504-2510.
    [56] 王志瑾, 徐庆华. M-型褶皱芯材弹性常数的细观力学模型[J]. 南京航空航天大学学报, 2004, 36(4):449-453. doi: 10.3969/j.issn.1005-2615.2004.04.009

    WANG Zhijin, XU Qinghua. Meso-mechanical model of elastic constants of m-type folded core[J]. Journal of Nanjing University of Aeronautics & Astronautics,2004,36(4):449-453(in Chinese). doi: 10.3969/j.issn.1005-2615.2004.04.009
    [57] 方耀楚. 二级层级褶皱结构力学性能研究与优化设计[D]. 大连: 大连理工大学, 2014.

    FANG Yaochu. Mechanical properties and optimal design of hierarchical corrugated structure with the second order core [D]. Dalian: Dalian University of Technology, 2014(in Chinese).
    [58] 方耀楚, 李刚. 基于板理论的层级褶皱结构失效模式分析[J]. 固体力学学报, 2014, 35(3):241-248.

    FANG Yaochu, LI Gang. Failure mode analysis of the structure with hierarchical corrugated truss core by using the theory of plate[J]. Acta Mechanica Solida Sinica,2014,35(3):241-248(in Chinese).
    [59] 袁新浩. 皱褶芯材夹层结构的隔声设计[D]. 南京: 南京航空航天大学, 2009.

    YUAN Xinhao. Design on soundproof characteristic of sandwich plates with folded core[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [60] 邵长林, 王建兵. 褶皱芯材结构隔声特性的实验研究[J]. 山东建材学院学报, 1999, 14(4):302-304.

    SHAO Changlin, WANG Jianbing. Experimental research of folder-filler structure's soundproof characteristic[J]. Journal of Shandong Institute of Building Materials,1999,14(4):302-304(in Chinese).
    [61] 王志瑾, 徐庆华. V-型褶皱夹芯板与隔声性能实验[J]. 振动工程学报, 2006, 19(1):65-69. doi: 10.3969/j.issn.1004-4523.2006.01.011

    WANG Zhijin, XU Qinghua. Experimental research on soundproof characteristic for the sandwich plates with folded core[J]. Journal of Vibration Engineering,2006,19(1):65-69(in Chinese). doi: 10.3969/j.issn.1004-4523.2006.01.011
    [62] 顾志武. 皱褶芯材和蜂窝芯材夹层板隔声性能研究[D]. 南京: 南京航空航天大学, 2007.

    GU Zhiwu. Research on the soundproof of the folder-filler core and honeycomb core sandwich panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [63] 熊红莲, 蔡俊, 兰思杰, 等. 隔声薄膜褶皱对微穿孔板吸声性能的影响[J]. 环境科学与技术, 2012, 35(4):52-54, 161. doi: 10.3969/j.issn.1003-6504.2012.04.012

    XIONG Honglian, CAI Jun, LAN Sijie, et al. Improvement of sound absorption characteristics for microperforated panel using insulation film folds[J]. Environmental Science & Technology,2012,35(4):52-54, 161(in Chinese). doi: 10.3969/j.issn.1003-6504.2012.04.012
    [64] 刘玲, 蔡俊, 熊红莲. 穿孔板褶皱复合结构声学性能优化研究[J]. 噪声与振动控制, 2013, 33(4):20-23. doi: 10.3969/j.issn.1006-1335.2013.04.005

    LU Ling, CAI Jun, XIONG Honglian. Optimal design of acoustic performance of a composite structure combined by a perforated plate and a sound insulation film drape[J]. Noise and Vibration Control,2013,33(4):20-23(in Chinese). doi: 10.3969/j.issn.1006-1335.2013.04.005
    [65] 熊红莲. 隔声薄膜褶皱复合结构吸声性能研究[D]. 上海: 上海交通大学, 2011.

    XIONG Honglian. Study of the sound absorption performance of the insulation film fold composite structures. [D] Shanghai: Shanghai Jiao Tong University, 2011(in Chinese).
    [66] GLASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]// 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008: 2682.
    [67] LIU Shuang, ZHANG Boming. Effects of active cooling on the metal thermal protection systems[J]. Aerospace Science and Technology,2011,15(7):526-533.
    [68] 黄盛, 王志瑾. 褶皱结构主动冷却热防护系统流热耦合分析[J]. 飞机设计, 2013, 33(3):21-26.

    HUANG Sheng, WANG Zhijin. The fluid thermal coupling analysis of an active cooling thermal protection system with folded structure[J]. Aircraft design,2013,33(3):21-26(in Chinese).
    [69] 周晨, 王志瑾, 支骄杨. 主动冷却褶皱芯材夹层板的热力分析[J]. 固体火箭技术, 2014, 37(4):545-550.

    ZHOU Chen, WANG Zhijin, ZHI Jiaoyang. Thermal mechanical analysis of actively cooled folded core sandwich panels[J]. Journal of Solid Rocket Technology,2014,37(4):545-550(in Chinese).
    [70] 侯天骄. 曲线型皱褶芯材夹层结构对流换热性能研究[D]. 南京: 南京航空航天大学, 2018.

    HOU Tianjiao. The convective heat transfer performance of curved-crease folded sandwich structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [71] 张辉. 皱褶夹芯板基本热力学性能研究[D]. 南京: 南京航空航天大学, 2005.

    ZHANG Hui. A Research on the thermodynamic characteristics of sandwich panel with folded core[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005(in Chinese).
    [72] 徐庆华. 金属皱褶芯材夹层板的热力学性能研究[D]. 南京: 南京航空航天大学, 2006.

    XU Qinghua. Research on thermodynamic characteristic for the metallic sandwich plates with folded core[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
    [73] 周晨, 王志瑾, 侯天骄. V-型皱褶芯材一体化热防护结构等效热传导系数预测[J]. 导弹与航天运载技术, 2019(3):21-28.

    ZHOU Chen, WANG Zhijin, HOU Tianjiao. Prediction of effective thermal conductivity of an integrated thermal protection system based on V-pattern folded core[J]. Missiles and Space Vehicles,2019(3):21-28(in Chinese).
    [74] ALVES M A, FOLGUERAS L C, REZENDE M C. Reduction of the radar cross section of a wind turbine using a microwave absorbing material[C]//International Microwave & Optoelectronics Conference. IEEE, 2011: 6169281.
    [75] PARK K Y, LEE S E, KIM C G, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures[J]. Composites Science & Technology,2006,66(3-4):576-584.
    [76] 聂毅, 余雄庆. 翼面隐身结构电磁散射特性稳健优化设计研究[J]. 航空学报, 2007, 28(Sup):S104-S108.

    NIE Yi, YU Xiongqing. Study on robust design optimization of electromagnetic scattering for stealthy wing structure[J]. Acta Aeronautica et Astronautica Sinica,2007,28(Sup):S104-S108(in Chinese).
    [77] 王志瑾, 徐庆华. 轻质铝箔V-型褶皱构型板雷达散射性能研究[J]. 航空学报, 2008, 29(5):1213-1217. doi: 10.3321/j.issn:1000-6893.2008.05.020

    WANG Zhijin, XU Qinghua. Research on RCS of plates with folded structure made of aluminium foil[J]. Acta Aeronautica et Astronautica Sinica,2008,29(5):1213-1217(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.05.020
    [78] 雷磊, 王志瑾. 铝箔V-型皱褶构型板的雷达散射性能影响因素的研究[C]// 第五届中国CAE工程分析技术年会论文集, 2009: 367-373.

    LEI Lei, WANG Zhijin. Research on RCS influence factors of aluminum foil plates with folded structure[C]// Proceedings of the 5th China CAE Engineering Analysis Technology Annual Conference, China, 2009: 367-373(in Chinese).
    [79] 宁莉, 杨绍昌, 冷悦, 等. 先进复合材料在飞机上的应用及其制造技术发展概述[J]. 复合材料科学与工程, 2020, 5:123-128. doi: 10.3969/j.issn.1003-0999.2020.07.020

    NING Li, YANG Shaochang, LENG Yue, et al. Overview of the application of advanced composite materials on aircraft and the development of its manufacturing technology[J]. Composites Science and Engineering,2020,5:123-128(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.07.020
    [80] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composite materials in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [81] WANG Z J, ZHOU C, KHALIULIN V, et al. An experimental study on the radar absorbing characteristics of folded core structures[J]. Composite Structures,2018,194(15):199-207.
    [82] 吴楠, 郝旭峰, 史耀辉, 等. 高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验[J]. 复合材料学报, 2020, 7(7):1619-1628.

    WU Nan, HAO Xufeng, SHI Yaohui, et al. Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels[J]. Acta Materiae Compositae Sinica,2020,7(7):1619-1628(in Chinese).
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  1983
  • HTML全文浏览量:  861
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 录用日期:  2020-08-21
  • 网络出版日期:  2020-09-03
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回