留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响

方园 赵华伟 张冰洁 张强先

方园, 赵华伟, 张冰洁, 等. 纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响[J]. 复合材料学报, 2021, 38(5): 1407-1415. doi: 10.13801/j.cnki.fhclxb.20200826.002
引用本文: 方园, 赵华伟, 张冰洁, 等. 纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响[J]. 复合材料学报, 2021, 38(5): 1407-1415. doi: 10.13801/j.cnki.fhclxb.20200826.002
FANG Yuan, ZHAO Huawei, ZHANG Bingjie, et al. Effect of nano TiO2 modified epoxy coating on UV-condensation aging characteristics of glass fiber/unsaturated polyester composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1407-1415. doi: 10.13801/j.cnki.fhclxb.20200826.002
Citation: FANG Yuan, ZHAO Huawei, ZHANG Bingjie, et al. Effect of nano TiO2 modified epoxy coating on UV-condensation aging characteristics of glass fiber/unsaturated polyester composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1407-1415. doi: 10.13801/j.cnki.fhclxb.20200826.002

纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响

doi: 10.13801/j.cnki.fhclxb.20200826.002
基金项目: 国家自然科学基金(51408304)
详细信息
    通讯作者:

    方园,博士,副研究员,硕士生导师,研究方向为复合材料结构劣化机理及性能提升 E-mail:yuanfang@njtech.edu.cn

  • 中图分类号: TB332

Effect of nano TiO2 modified epoxy coating on UV-condensation aging characteristics of glass fiber/unsaturated polyester composite

  • 摘要: 通过紫外-凝露加速老化试验,考察了纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料各种性能的影响。研究了紫外-凝露环境中不同纳米TiO2含量的纳米TiO2改性环氧涂层的颜色及硬度变化。并研究了未涂覆涂层、涂覆环氧涂层及2wt%TiO2改性环氧涂层的玻璃纤维/不饱和聚酯复合材料的颜色变化、质量变化、弯曲性能及剪切性能变化规律。发现紫外-凝露环境下老化90天后未涂覆涂层、涂覆环氧涂层及2wt% TiO2改性环氧涂层玻璃纤维/不饱和聚酯复合材料弯曲强度分别下降了14.7%、10.0%和9.2%,弯曲模量分别下降了5.9%、5.4%和3.2%。考虑紫外、湿度、温度共同作用,对古尼耶夫剩余强度公式进行修正,预测了纳米 TiO2改性环氧涂层玻璃纤维/不饱和聚酯复合材料的寿命。

     

  • 图  1  紫外光耐气候试验箱

    Figure  1.  UV climate test chamber

    图  2  不同纳米TiO2含量的纳米TiO2/环氧涂层的玻璃纤维/不饱和聚酯复合材料表面在紫外-凝露环境中明度的变化曲线

    Figure  2.  Lightness variation of glass fiber/unsaturated polyester composites with nano TiO2/epoxy coating with different contents of TiO2 in UV-condensation environment

    图  3  不同TiO2含量的纳米TiO2/环氧涂层的玻璃纤维/不饱和聚酯复合材料表面在紫外-凝露环境中绿-红偏色范围的变化曲线

    Figure  3.  Green-red color range variation of glass fiber/unsaturated polyester composites with nano TiO2/epoxy coating with different contents of TiO2 in UV-condensation environment

    图  4  不同TiO2含量的纳米TiO2/环氧涂层的玻璃纤维/不饱和聚酯复合材料表面在紫外-凝露环境中蓝-黄偏色范围的变化曲线

    Figure  4.  Blue-yellow color range variation of glass fiber/unsaturated polyester composites with nano TiO2/epoxy coating with different contents of TiO2 in UV-condensation environment

    图  5  紫外-凝露环境下玻璃纤维/不饱和聚酯复合材料弯曲强度随老化时间的变化曲线

    Figure  5.  Curves of flexural strength of glass fiber/unsaturated polyester composites with aging time in UV-condensation environment

    图  6  紫外-凝露环境下玻璃纤维/不饱和聚酯复合材料弯曲模量随老化时间的变化曲线

    Figure  6.  Curves of flexural modulus of glass fiber/unsaturated polyester composites with aging time in UV-condensation environment

    图  7  紫外-凝露环境下玻璃纤维/不饱和聚酯复合材料剪切强度随老化时间的变化曲线

    Figure  7.  Curves of shear strength of glass fiber/unsaturated polyester composites with aging time in UV-condensation environment

    图  8  紫外-凝露环境下未涂覆(a)、涂覆环氧涂层(b)、涂覆2wt% TiO2/环氧涂层(c)的玻璃纤维/不饱和聚酯复合材料弯曲强度剩余率拟合结果

    Figure  8.  Fitting results of residual ration of flexural strength of glass fiber/unsaturated polyester composites with uncoated (a), coated epoxy coating (b), and coated 2wt% TiO2/epoxy coating (c) in UV-condensation environment

    图  9  紫外-凝露环境下玻璃纤维/不饱和聚酯复合材料弯曲强度预测曲线

    Figure  9.  Prediction curves of flexural strength of glass fiber/unsaturated polyester composites in UV-condensation environment

    表  1  不同TiO2含量对环氧涂层硬度的影响

    Table  1.   Effect of different TiO2 contents on hardness of epoxy coating

    Content of
    TiO2/wt%
    Hardness grade
    0 d90 d
    0 2H 3B
    1 3H 3B
    2 4H 2B
    3 4H 2B
    5 4H 3B
    下载: 导出CSV
  • [1] 滕锦光. 新材料组合[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG J G. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [2] 王彬, 杨勇新, 岳清瑞. 碳纤维增强复合材料筋海洋环境耐久性能研究进展[J]. 化工新型材料, 2016, 44(2):12-14.

    WANG B, YANG Y X, YUE Q R. Research progress on the durability of carbon fiber reinforced polymer bar in the marine environment[J]. New Chemical Materials,2016,44(2):12-14(in Chinese).
    [3] 宋文, 冯鹏, 黄福胜, 等. 纤维增强复合材料增强和修复加固大尺寸钢筋混凝土柱抗震性能研究[J]. 工业建筑, 2019, 49(9):130-138.

    SONG W, FENG P, HUANG F S, et al. Experimental study on seismic strengthening and repairing of large scale reinforced concrete column suing FRP[J]. Industrial Construction,2019,49(9):130-138(in Chinese).
    [4] 潘云锋, 咸贵军, 李惠. 冻融下复合板-混凝土界面耐久性研究[J]. 工业建筑, 2016, 46(5):50-54.

    PAN Y F, XIAN G J, LI H. Study of durability of CFRP plates-concrete interface under freeze-thaw cycles[J]. Industrial Construction,2016,46(5):50-54(in Chinese).
    [5] 吴刚, 吴智深, 胡显奇, 等. 玄武岩纤维在土木工程中的应用研究现状及进展[C]//第五届全国FRP学术交流会. 广州: 中国土木工程学会, 2007: 410-415.

    WU G, WU Z S, HU X Q, et al. Current research and development of the application of basalt fiber in civil engineering[C]//5th National FRP Academic Exchange Conference. Guangzhou: China Civil Engineering Society, 2007: 410-415 (in Chinese).
    [6] 薛伟辰, 刘亚男, 付凯, 等. 碱和海水环境下GFRP筋的抗拉性能加速老化试验研究[J]. 华北水利水电大学学报(自然科学版), 2015, 36(1):38-42.

    XUE W C, LIU Y N, FU K, et al. Experimental research on accelerated ageing of tensile properties of GFRP bars in alkaline and seawater environment[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2015,36(1):38-42(in Chinese).
    [7] BAZLI M, JAFARI A, ASHRAFI H, et al. Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles[J]. Construction and Building Materials,2020,231:117137. doi: 10.1016/j.conbuildmat.2019.117137
    [8] YANG S L, LIU W Q, FANG Y. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites[J]. Journal of Materials Science,2019,54(3):2102-2121. doi: 10.1007/s10853-018-2944-6
    [9] 代礼葵, 孙耀宁, 王国建. 玻璃纤维/环氧乙烯基酯树脂复合材料环境综合因素下的冲蚀行为及机制[J]. 复合材料学报, 2019, 36(9):2059-2066.

    DAI L K, SUN Y N, WANG G J. Erosion behavior and mechanism of glass fiber/epoxy vinlester composites under multiple environmental factors[J]. Acta Materiae Compositae Sinica,2019,36(9):2059-2066(in Chinese).
    [10] XU Y, FANG Y, WANG K, et al. Improving durability of glass fiber reinforced polymer composites by incorporation of ZnO/OMMT nanoparticles subjected to UV radiation and hygrothermal aging[J]. Materials Research Express,2020,7(3):035301. doi: 10.1088/2053-1591/ab771b
    [11] 兰春晏, 贾彬, 杨勇新, 等. 基于深度信念网络的玄武岩纤维增强树脂复合材料耐久性预测[J]. 复合材料学报, 2020, 37(2):390-399.

    LAN C Y, JIA B, YANG Y X, et al. Durability prediction of basalt fiberforced polymer composite based on deep belief network[J]. Acta Materiae Compositae Sinica,2020,37(2):390-399(in Chinese).
    [12] HAMED A, BAZLI M, OSKOUEI A V, et al. Effect of sequential exposure to UV radiation and water vapor condensation and extreme temperatures on the mechanical properties of GFRP bars[J]. Journal of Composites for Construction,2018,22(1):04017047. doi: 10.1061/(ASCE)CC.1943-5614.0000828
    [13] KUMAR B G, SINGH R P, NAKAMURA T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation[J]. Journal of Composite Materials,2002,36(24):2713-2733. doi: 10.1177/002199802761675511
    [14] 顾习峰. 玄武岩纤维复合材料加固混凝土构件在紫外线照射下的耐久性试验研究[D]. 青岛: 青岛理工大学, 2010.

    GU X F. Experimental study on durability of concrete members strengthened with basalt fiber composites under ultraviolet irradiation[D]. Qingdao: Qingdao Technological University, 2010(in Chinese).
    [15] 张琦, 黄故. 不饱和聚酯基玻璃钢的紫外线老化试验[J]. 东华大学学报(自然科学版), 2009, 35(5):506-509.

    ZHANG Q, HUANG G. Ultraviolet aging test of unsaturated polyester-based FRP[J]. Journal of Donghua University (Natural Science Edition),2009,35(5):506-509(in Chinese).
    [16] LIU T Q, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering,2020,191:107958.
    [17] WANG J, HOTA G, LIANG R, et al. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review[J]. Journal of Reinforced Plastics & Composites,2016,35(3):179-211.
    [18] KASHI A, RAMEZANIANPOUR A A, MOODI F. Effect of cement based coatings on durability enhancement of GFRP-wrapped columns in marine environments[J]. Construction and Building Materials,2017,137:307-316. doi: 10.1016/j.conbuildmat.2017.01.119
    [19] 曹祥康, 黄峰, 熊思, 等. 不同石墨烯纳米片添加量对石墨烯纳米片-40%Zn/环氧涂层防腐性能的影响[J]. 复合材料学报, 2019, 36(7):1607-1617.

    CAO X K, HUANG F, XIONG S, et al. Effects of varying grapheme nanoplates addition on anticorrosive properties of grapheme nanoplates-40%Zn/epoxy coating[J]. Acta Materiae Compositae Sinica,2019,36(7):1607-1617(in Chinese).
    [20] LI C C, LAI T Y, FANG T H. Corrosion resistant coatings based on zinc nanoparticles, epoxy and silicone resins[J]. Journal of Nanoscience and Nanotechnology,2020,20(10):6389-6395. doi: 10.1166/jnn.2020.18709
    [21] 邵笑, 何春霞, 段国燕. TiO2增强桉木/聚氯乙烯复合材料耐腐蚀性能[J]. 复合材料学报, 2019, 36(1):77-84.

    SHAO X, HE C X, DUAN G Y. Corrosion resistance of TiO2 reinforced eucalyptus/polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica,2019,36(1):77-84(in Chinese).
    [22] 何毅, 陈春林, 钟菲, 等. KH560改性纳米二氧化钛对环氧涂层性能影响[J]. 材料科学与工艺, 2018, 22(6):728-739.

    HE Y, CHEN C L, ZHONG F, et al. The impact of nano titanium dioxide modified by KH560 on epoxy coating performace[J]. Materials Science and Technology,2018,22(6):728-739(in Chinese).
    [23] BULMANIS V N, GUNYAEV G M, KRIVONOS V V. Risa spavlam[M]. Moscow: USSR, 1991.
    [24] American Society for Testing Material International. Standard test methods for flexural properties of unrein-forced and reinforced plastics and electrical insulating materials: ASTM D790—17[S]. West Conshohocken: ASTM International, 2017.
    [25] American Society for Testing Material International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344M—16[S]. West Conshohocken: ASTM International, 2016.
    [26] 中国国家标准化管理委员会. 色漆和清漆 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Paints and varnishes: Determination of film hardness by pencil test: GB/T 6739—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [27] 张颖军, 朱锡, 梅志远, 等. 聚合物基复合材料老化剩余强度等效预测方法研究[J]. 材料导报, 2012, 26(4):150-152.

    ZHANG Y J, ZHU X, MEI Z Y, et al. Equivalent estimating methods of ageing on polymer matrix composites residual strength[J]. Materials Review,2012,26(4):150-152(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  239
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 录用日期:  2020-08-15
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回