留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体/金属-有机骨架复合材料制备方法、理论计算及应用研究进展

文桂林 李莹 张红星 肖安山

文桂林, 李莹, 张红星, 等. 离子液体/金属-有机骨架复合材料制备方法、理论计算及应用研究进展[J]. 复合材料学报, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003
引用本文: 文桂林, 李莹, 张红星, 等. 离子液体/金属-有机骨架复合材料制备方法、理论计算及应用研究进展[J]. 复合材料学报, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003
WEN Guilin, LI Ying, ZHANG Hongxing, et al. Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003
Citation: WEN Guilin, LI Ying, ZHANG Hongxing, et al. Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003

离子液体/金属-有机骨架复合材料制备方法、理论计算及应用研究进展

doi: 10.13801/j.cnki.fhclxb.20200825.003
基金项目: 国家自然科学基金(21701189)
详细信息
    通讯作者:

    李莹,博士,高级工程师,研究方向为挥发性有机物吸附材料及安全功能材料 E-mail:liying.chemistry@outlook.com

  • 中图分类号: TB331

Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites

  • 摘要: 金属-有机骨架(MOF)是一种多孔、高比表面积的新型纳米材料。离子液体(IL)具有稳定性好、功能可设计的特点,将IL负载到MOF的孔中,实现离子液体和MOF材料的有效组合,开发新型功能化复合多孔材料,有利于充分发挥两种材料的优势。本文主要介绍IL/MOF复合材料合成方法、分子模拟及其应用的最新研究。总结目前IL/MOF复合材料研究中存在的问题和机遇,并展望了IL/MOF复合材料的发展方向。

     

  • 图  1  目前常用的几种离子液体/金属-有机骨架(IL/MOF)复合材料的合成方法

    Figure  1.  Several commonly used synthesis methods of ionic liquid/metal-organic framework (IL/MOF) composite materials

    图  2  ZIF-8和多种IL@ZIF-8复合材料的理想CO2/CH4选择性与CO2分压的函数关系[46]

    Figure  2.  Ideal CO2/CH4 selectivity of ZIF-8 and IL@ZIF-8 composites as a function of CO2 partial pressure[46]

    图  3  [Hnmp][H2PO4]/MOF-199复合材料的结构及其吸附性能示意图[59]

    Figure  3.  Structure [Hnmp][H2PO4]/MOF-199 composite and its adsorption performance diagram[59]

    图  4  离子液体(IL)/NH2-MIL-101结构(左)、IL/NH2-MIL-101在SPAEK中的分散图(右)[70]

    Figure  4.  Structure of ionic liquid (IL)/NH2-MIL-101 (left), scatter diagram of IL/NH2-MIL-101 in SPAEK (right) [70]

    图  5  咪唑(IMIZ)-酸性离子液体(BAIL)/MIL-101合成及其纳米笼中的微环境[24]

    Figure  5.  Synthesis of imidazole (IMIZ)-bronsted acidic ionic liquid (BAIL)/MIL-101 and its microenvironment in nanocage[24]

    图  6  氨基官能化IL(ABIL)-OH/Cu3(BTC)2在不同尺寸反应底物下的催化活性[14]

    Figure  6.  Catalytic activity of amino functionalizes IL (ABIL)-OH/Cu3(BTC)2 under different size reaction substrates[14]

    图  7  非均相ABIL/HKUST-1催化剂在不同酸碱性溶剂中的合成表现[82]

    Figure  7.  Synthesis performance of heterogeneous ABIL/HKUST-1 catalyst in different acidity solvents[82]

    DMF—Dimethyl formamide

    图  8  加热过程中离子电导率的阿伦尼乌斯图[29]

    Figure  8.  Arrhenius plot of the ionic conductivity in the heating process[29]

    表  1  离子液体的缩写说明

    Table  1.   Abbreviations of ionic liquids

    AbbreviationIonic liquid
    [BMIM][PF6] 1-Butyl-3-methylimidazole hexafluorophosphate
    [BMIM][Tf2N] 1-Butyl-3-methylimidazole bis(trifluoromethylsulfonyl)imide
    [BMIM][SCN] 1-Butyl-3-methylimidazole thiocyanate
    [BMIM][BF4] 1-Butyl-3-methylimidazole tetrafluoroborate
    [BMIM][MeSO4] 1-Ethyl-3-methylimidazole methyl sulfate
    [BuPh3P][Br] (4-Bromobutyl) triphenylphosphonium bromide
    [C2MIM][Ac] 1-Ethyl-3-methylimidazole acetate
    [C4MIM][Br] 1-Butyl-3-methylimidazole bromide
    [C6MIM][Cl] 1-Hexyl-3-methylimidazole chloride
    [C10MIM][NTf2] 1-Decyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide
    [C6MIM][N(CN)2] 1-Hexyl-3-methylimidazole dicyanamide
    [C6MIM][C(CN)3] 1-Hexyl-3-methylimidazole melamine
    [EMIM][TFSA] 1-Ethyl-3-methylimidazole bis(trifluoromethylsulfonyl)amide
    EIMS 1-(1-Ethyl-3-imidazolium)propane-3-sulfonate
    [Emim][EtSO4] 1-Ethyl-3-methylimidazole ethyl sulfate
    [Emim][Gly] 1-Ethyl-3-methylimidazole glycinate
    [Emim][Phe] 1-Ethyl-3-methylimidazole phenylpropionate
    [Hnmp][H2PO4] 1-Methyl-2-pyrrole dihydrogen phosphate
    [HEMIM][DCA] 1-(2-Hydroxyethyl)-3-methylimidazole dicyandiamide
    HTFSA N,N-Bis(trifluoromethanesulfonyl)amide
    [MPIm][Br] 1-Propyl-3-methylimidazole bromide
    [P66614][NTf2] Trihexyltetradecylphosphine bis(trifluoromethylsulfonyl)amide
    [PSMIM][HSO4] 1-Methylimidazole-3-propylsulfonic acid hydrogen sulfate
    下载: 导出CSV
  • [1] BAN Y, LI Z, LI Y, et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for mem-brane-based CO2 capture[J]. Angewandte Chemie,2015,54(51):15483-15487.
    [2] BAE Y, LEE C Y, KIM K C, et al. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites[J]. Angewandte Chemie,2012,51(8):1857-1860.
    [3] KAZUYUKI F, HIROSHI K. Ionic liquid transported into metal-organic frameworks[J]. Coordination Chemistry Reviews,2016,307:382-390. doi: 10.1016/j.ccr.2015.09.003
    [4] HOSSEIN S, GOMAA A M A, VAHID S. Metal-organic framework supported ionic liquid membranes for CO2 capture: Anion effects[J]. Journal of Inorganic and Organometallic Polymers and Materials,2012,14(16):5785-5794.
    [5] TANG Y, HUANG H, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture[J]. Journal of Materials Chemistry A,2019,7(31):18324-18329. doi: 10.1039/C9TA04408F
    [6] MORRIS R E. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials[J]. Chem Commun (Camb),2009,40(21):2990-2998. doi: 10.1039/b902611h
    [7] AN J, ROSI N L. Tuning MOF CO2 adsorption properties via cation exchange[J]. Journal of the American Chemical Society,2010,132(16):5578-5579. doi: 10.1021/ja1012992
    [8] BAN Y, LI Y, PENG Y, et al. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties[J]. Chemistry-A European Journal,2014,20(36):11402-11409. doi: 10.1002/chem.201402287
    [9] THOMPSON J A, VAUGHN J T, BRUNELLI N A, et al. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas[J]. Miroporous and Mesoporous Material,2014,192:43-51. doi: 10.1016/j.micromeso.2013.06.036
    [10] HU Z, XU Q L. Metal-organic frame-work composites[J]. Chemical Society Reviews,2014,43(16):5468-5512. doi: 10.1039/C3CS60472A
    [11] UZUN A, KESKIN S. Site characteristics in metal organic frameworks for gas adsorption[J]. Progress in Surface Science,2014,89(1):56-79. doi: 10.1016/j.progsurf.2013.11.001
    [12] WAN H, CHEN C, WU Z, et al. Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production[J]. ChemCatChem,2015,7(3):441-449. doi: 10.1002/cctc.201402800
    [13] KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks: Remarkable adsorbents for adsorptive desulfurization[J]. Chemistry-A European Journal,2014,20(2):376-380. doi: 10.1002/chem.201304291
    [14] L UO, Q X, SONG X D, et al. Molecular size-and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst[J]. Applied Catalysis A: General,2014,478:81-90. doi: 10.1016/j.apcata.2014.03.041
    [15] ABEDNATANZI S, ABBASI A, MAJID M F. Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100 (Fe): A recyclable catalyst for selective oxidation of benzyl alcohol[J]. Catalysis Communications,2017,96:6-10. doi: 10.1016/j.catcom.2017.03.011
    [16] WU J, GAO Y, ZHANG W, et al. Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst[J]. Applied Organometallic Chemistry,2015,29(2):96-100. doi: 10.1002/aoc.3251
    [17] SEZGINEL K B., KESKIN S, UZUN A. Tuning the gas separation performance of CuBTC by ionic liquid incorporation[J]. Langmuir the Acs Journal of Surfaces & Colloids,2016,32(4):1139-1147. doi: 10.1021/acs.langmuir.5b04123
    [18] CHEN C, WU Z, QUE Y, et al. Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge[J]. RSC Advances,2016,6(59):54119-54128. doi: 10.1039/C6RA03317B
    [19] MA J, YING Y, GUO X, et al. Fabrication of mixed-matrix membrane containing metal-organic framework compo-site with task-specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry A,2016,4(19):7281-7288. doi: 10.1039/C6TA02611G
    [20] HAN M, GU Z, CHEN C, et al. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production[J]. RSC Advances,2016,6(43):37110-37117. doi: 10.1039/C6RA00579A
    [21] NASROLLAHPOUR A, MORADI S E. Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent[J]. Microporous Mesoporous Materials,2017,243:47-55. doi: 10.1016/j.micromeso.2017.02.006
    [22] DA SILVA F W M, MAGALHÃES G M, JARDIM E O. CO2 adsorption on ionic liquid-modified Cu-BTC: Experimental and simulation study[J]. Adsorption Science & Technology,2015,33:223-242.
    [23] IZATT R M. Macrocyclic and supramolecular chemistry: How izatt-christensen award winners shaped the field[M]. Hoboken: John Wiley & Sons, 2016: 10-37.
    [24] LUO Q X, JI M, LU M H, et al. Organic electron-rich N-heterocyclic compound as a chemical bridge: Building a Brönsted acidic ionic liquid confined in MIL-101 nanocages[J]. Journal of Materials Chemistry A,2013,1(22):6530-6534. doi: 10.1039/c3ta10975e
    [25] FUJIE K, YAMADA T, IKEDA R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie International Edition,2014,53(42):11302-11305. doi: 10.1002/anie.201406011
    [26] FUJIE K, OTSUBO K, IKEDA R, et al. Low temperature ionic conductor: Ionic liquid incor-porated within a metal-organic framework[J]. Chemical science,2015,6(7):4306-4310. doi: 10.1039/C5SC01398D
    [27] X IN, Y, WANG C, WANG Y, et al. Encapsulation of an ionic liquid into the nanopores of a 3D covalent organic framework[J]. RSC Advances,2017,7(3):1697-1700. doi: 10.1039/C6RA27213D
    [28] DHUMAL N R, SINGH M P, ANDERSON J A, et al. Molecular interactions of a Cu-based metal-organic framework with a confined imidazolium-based ionic liquid: A combined density functional theory and experimental vibrational spectroscopy study[J]. The Journal of Physical Chemistry C,2016,120(6):3295-3304. doi: 10.1021/acs.jpcc.5b10123
    [29] FUJIE K, IKEDA R, OTSUBO K, et al. Lithium ion diffusion in a metal-organic framework mediated by an ionic liquid[J]. Chemistry of Material,2015,27(21):7355-7361. doi: 10.1021/acs.chemmater.5b02986
    [30] LI Z, WANG W, CHEN Y, et al. Constructing efficient ion nanochannels in alkaline anion ex-change membranes by the in situ assembly of a poly (ionic liquid) in metal-organic frameworks[J]. Journal of Materials Chemistry A,2016,4(6):2340-2348. doi: 10.1039/C5TA10452A
    [31] KHAN N A, HASAN Z, JHUNG S H. Ionic liquid@ MIL-101 prepared via the ship-in-bottle technique: Remarkable adsorbents for the removal of benzothiophene from liquid fuel[J]. Chemical Communications,2016,52(12):2561-2564. doi: 10.1039/C5CC08896H
    [32] XUE W, LI Z, HUANG H, et al. Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study[J]. Chemical Engineering Science,2016,140:1-9. doi: 10.1016/j.ces.2015.10.003
    [33] CHEN B, OCKWIG N W, MILLWARD A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angewandte Chemie International Edition,2005,44(30):4745-4749. doi: 10.1002/anie.200462787
    [34] XIANG S, ZHOU W, GALLEGOS J M, et al. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites[J]. Journal of the American Chemical Society,2009,131(34):12415-12419. doi: 10.1021/ja904782h
    [35] WU H, ZHOU W, YILDIRIM T. High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites[J]. Journal of the American Chemical Society,2009,131(13):4995-5000. doi: 10.1021/ja900258t
    [36] DIETZEL P DC, BESIKIOTIS V, BLOM R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. Journal of Materials Chemistry,2009,19(39):7362-7370. doi: 10.1039/b911242a
    [37] KINIK F P, ALTINTAS C, BALCI V, et al. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces,2016,8(45):30992-31005.
    [38] POLATA H M, ZEESHAN M, UZUN A, et al. Unlocking CO2 separation performance of ionic liquid/CuBTC composites: Combining experiments with molecular simulations[J]. Chemical Engineering Journal,2019,373:1179-1189. doi: 10.1016/j.cej.2019.05.113
    [39] LEI Z, DAI C, SONG W. Adsorptive absorption: A preliminary experimental and modeling study on CO2 solubility[J]. Chemical Engineering Science,2015,127:260-268. doi: 10.1016/j.ces.2015.01.043
    [40] GUPTA K M, CHEN Y, JIANG J. Ionic liquid membranes supported by hydrophobic and hydrophilic metal-organic frameworks for CO2 capture[J]. The Journal of Physical Chemistry C,2013,117(11):5792-5799. doi: 10.1021/jp312404k
    [41] KINIK F P, UZUN A, KESKIN S. Ionic liquid/metal-organic framework composites: From synthesis to applications[J]. ChemSusChem,2017,10(14):2842-2863. doi: 10.1002/cssc.201700716
    [42] KOYUTURK B, ALTINTAS C, KINIK F P, et al. Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: Interactions and their consequences on performance[J]. The Journal of Physical Chemistry C,2017,121(19):10370-10381. doi: 10.1021/acs.jpcc.7b00848
    [43] CHEN Y, HU Z, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture: A computational investigation[J]. The Journal of Physical Chemistry C,2011,115(44):21736-21742.
    [44] KULAK H, POLAT H M, KAVAK S, et al. Improving CO2 separation performance of MIL-53(Al) by incorporating 1-n-butyl-3-methylimidazolium methyl sulfate[J]. Energy Technol (Weinh),2019,7(7):1900157. doi: 10.1002/ente.201900157
    [45] XIA X, HU G, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials,2019,2(9):6022-6029. doi: 10.1021/acsanm.9b01538
    [46] FERREIRA T J, RIBEIRO R P P L, MOTA J P B, et al. Ionic liquid-impregnated metal–organic frameworks for CO2/CH4 separation[J]. ACS Applied Nano Materials,2019,2(12):7933-7950. doi: 10.1021/acsanm.9b01936
    [47] ANTHONY J L, ANDERSON J L, MAGINN E J, et al. Anion effects on gas solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2005,109(13):6366-6374. doi: 10.1021/jp046404l
    [48] ZEESHAN M, NOZARI V, YAGCI M B, et al. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society,2018,140(32):10113-10116. doi: 10.1021/jacs.8b05802
    [49] LI Z, XIAO Y, XUE W, et al. Ionic liquid/metal-organic framework composites for H2S removal from natural gas: A computational exploration[J]. The Journal of Physical Chemistry C,2015,119(7):3674-3683. doi: 10.1021/acs.jpcc.5b00019
    [50] 武晓博, 范远, 韩昕儒, 等. 天然气脱硫过程分析及应对措施[J]. 中国石油和化工标准与质量, 2019, 39(12):171-172.

    WU Xiaobo, FAN Yuan, HAN Xinru, et al. Analysis and countermeasures of natural gas desulfurization process[J]. China Petroleum and Chemical Standards and Quality,2019,39(12):171-172(in Chinese).
    [51] 刘恒. 天然气脱硫脱碳工艺的进展分析[J]. 能源与环保, 2019, 41(3):122-125.

    LIU Heng. Progress analysis of natural gas desulfurization and decarbonization process[J]. China Energy and Environmental Protection,2019,41(3):122-125(in Chinese).
    [52] LAMBERT T W, GOODWIN V M, STEFANI D, et al. Hydrogen sulfide (H2S) and sour gas effects on the eye: A historical perspective[J]. Science of the Total Environment,2006,367(1):1-22. doi: 10.1016/j.scitotenv.2006.01.034
    [53] CHOU, CH S J. Concise international chemical assessment document 53[R]. Geneva: World Health Organization, 2003.
    [54] 屈志伟. 浅析天然气脱硫主要方法[J]. 山东工业技术, 2019(10):83.

    QU Zhiwei. Analysis on the main methods of natural gas desulfurization[J]. Shandong Industrial Technology,2019(10):83(in Chinese).
    [55] BAREA E, MONTORO C, NAVARRO J A R. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chemical Society Reviews,2014,43(16):5419-5430. doi: 10.1039/C3CS60475F
    [56] DHAGE P, SAMOKHVALOV A, REPALA D, et al. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: Performance, active sites, operando studies[J]. Physical Chemistry Chemical Physics,2011,13(6):2179-2187. doi: 10.1039/C0CP01355B
    [57] SHIRAZI A, RAEISPOUR L, MOHAMMAD N. Modeling H2S solubility in aqueous N-methyldiethanolamine solution using a new ePC_SAFT-MB equation of state[J]. Fluid Phase Equilibria,2019,502:112289. doi: 10.1016/j.fluid.2019.112289
    [58] LI Y, MATHER A E. Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of methyldiethanolamine[J]. Industrial Engineering Chemistry Research,1997,36(7):2760-2765. doi: 10.1021/ie970061e
    [59] SONG H, LI X, JIANG B, et al. Preparation of novel and highly stable Py/MOF and its adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research,2019,58(42):19586-19598.
    [60] ERUCAR I, YILMAZ G, KESKIN S. Recent advances in metal-organic framework-based mixed matrix membranes[J]. Chemistry-An Asian Journal,2013,8(8):1692-1704. doi: 10.1002/asia.201300084
    [61] 张晶晶, 张亚涛. 基于MOF的混合基质膜在气体分离中的研究进展[J]. 现代化工, 2019, 39(8):38-42.

    ZHANG Jingjing, ZHANG Yatao. Research progress in applications of MOFs-based mixed matrix membrane in gas separation[J]. Modern Chemical Industry,2019,39(8):38-42(in Chinese).
    [62] JOMEKIAN A, BAZOOYAR B, BEHBAHANI R M, et al. Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2[J]. Journal of Membrane Science,2017,524:652-662. doi: 10.1016/j.memsci.2016.11.065
    [63] HAO L, LI P, YANG T, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture[J]. Journal of Membrane Science,2013,436:221-231. doi: 10.1016/j.memsci.2013.02.034
    [64] CLARA C C, ANA F B, BEATRIZ Z, et al. Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation[J]. RSC Advances,2015,5(124):102350-102361. doi: 10.1039/C5RA19331A
    [65] TZIALLA O, VEZIRI C, PAPATRYFON X, et al. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation[J]. Journal of Physical Chemistry C,2013,117(36):18434-18440. doi: 10.1021/jp4051287
    [66] HUANG Y, XIAO Y, HUANG H, et al. Ionic liquid functionalized multi-walled carbon nanotubes/zeolitic imidazolate framework hybrid membranes for efficient H2/CO2 separation[J]. Chemical Communications,2015,51(97):17281-17284. doi: 10.1039/C5CC05061H
    [67] DEIKO G S, ISAEVA V I, KUSTOV L M. New molecular sieve materials: composites based on metal-organic frameworks and ionic liquids[J]. Petroleum Chemistry,2019,59(8):770-787. doi: 10.1134/S096554411908005X
    [68] NABAISA A R, MARTINSB A P S, ALVES V D, et al. Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation[J]. Separation and Purification Technology,2019,222:168-176. doi: 10.1016/j.seppur.2019.04.018
    [69] VU M T, LIN R, DIAO H, et al. Effect of ionic liquids (IL) on MOF/polymer interfacial enhancement in mixed matrix membranes[J]. Journal of Membrane Science,2019,587:117157. doi: 10.1016/j.memsci.2019.05.081
    [70] RU C, GU Y, NA H, et al. Preparation of a cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane with enhanced proton conductivity and methanol resistance by introducing an ionic liquid-impregnated metal organic framework[J]. ACS Applied Materials & Interfaces,2019,11(35):31899-31908. doi: 10.1021/acsami.9b09183
    [71] LI H, TUO L, YANG K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science,2016,511:130-142. doi: 10.1016/j.memsci.2016.03.050
    [72] 罗资琴. 石油及其产品中硫危害的分析[J]. 宁夏石油化工, 2003(3):8-10.

    LUO Ziqin. The analysis onthe damages caused by sulfur in petroleum and its products[J]. Ningxia Petroleum and Chemical Industry,2003(3):8-10(in Chinese).
    [73] SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Advances,2012,2(3):759-783. doi: 10.1039/C1RA00309G
    [74] JAVADLI R, ARNO D K. Desulfurization of heavy oil[J]. Applied Petrochemical Research,2012,1(1-4):3-19. doi: 10.1007/s13203-012-0006-6
    [75] SAMOKHVALOV A, TATARCHUK B J. Review of experimental characterization of active sites and determination of molecular mech-anisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels[J]. Catalysis Reviews,2010,52(3):381-410. doi: 10.1080/01614940.2010.498749
    [76] AHMEDA I, ADHIKARYB K K, LEE Y R, et al. Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water[J]. Chemical Engineering Journal,2019,370:792-799. doi: 10.1016/j.cej.2019.03.265
    [77] GUTIERREZ-SEVILLANO J J, VICENT-LUNA J M, DUBBELDAM D, et al. Molecular mechanisms for adsorption in Cu-BTC metal organic framework[J]. The Journal of Physical Chemistry C,2013,117(21):11357-11366. doi: 10.1021/jp401017u
    [78] ZHANG Y, DEGIRMENCI V, LI C, et al. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural[J]. ChemSusChem,2011,4(1):59-64. doi: 10.1002/cssc.201000284
    [79] 孙健, 李岱霖, 倪菲, 等. 离子液体应用的研究进展[J]. 应用化工, 2019, 48(7):1724-1727, 1733.

    SUN Jian, LI Dailin, NI Fei, et al. Advances in the applications of ionic liquids[J]. Applied Chemical Industry,2019,48(7):1724-1727, 1733(in Chinese).
    [80] THARUN J, BHIN K M, ROSHAN R, et al. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2[J]. Green Chemistry,2016,18(8):2479-2487. doi: 10.1039/C5GC02153G
    [81] DAI W, MAO P, LIU Y, et al. Quaternary phosphonium salt-functionalized Cr-MIL-101: A bi-functional and efficient catalyst for CO2 cycload-dition with epoxides[J]. Journal of CO2 Utilization,2020,36:295-305. doi: 10.1016/j.jcou.2019.10.021
    [82] LUO Q, AN B, JI M, et al. Metal-organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: Effect of chemical behaviour of ionic liquid in solvent[J]. Journal of Porous Materials,2014,22(1):247-259.
    [83] SUN Y, JIA X, HUANG H, et al. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation[J]. Journal of Materials Chemistry A,2020,8(6):3180-3185. doi: 10.1039/C9TA10409G
    [84] MASAAKI S, TEPPEI Y, HIROSHI K. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework[J]. Journal of the American Chemical Society,2014,136(38):13166-13169. doi: 10.1021/ja507634v
    [85] XU G, OTSUBO K, YAMADA T, et al. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm[J]. Journal of the American Chemical Society,2013,135(20):7438-7441. doi: 10.1021/ja402727d
    [86] HORIKE S, UMEYAMA D, KITAGAWA S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks[J]. Accounts of Chemical Research,2013,46(11):2376-2384. doi: 10.1021/ar300291s
    [87] WANG G, WENG Y, CHU D, et al. Preparation of alkaline anion exchange membranes based on functional poly (etherimide) polymers for potential fuel cell applications[J]. Journal of Membrane Science,2009,326(1):4-8. doi: 10.1016/j.memsci.2008.09.037
    [88] LIU C, ZHANG G, ZHAO C, et al. MOF synthesized by the ionothermal method addressing the leaching problem of IL-polymer composite membranes[J]. Chemical Communications,2014,50(91):14121-14124. doi: 10.1039/C4CC05526H
    [89] SUN X, DENG W, CHEN H, et al. A metal-organic framework impregnated with a binary ionic liquid for safe proton conduction above 100℃[J]. Chemistry-A European Journal,2017,23(6):1248-1252. doi: 10.1002/chem.201605215
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1972
  • HTML全文浏览量:  714
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 录用日期:  2020-08-04
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回