留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素基金属纳米粒子复合材料的制备及其应用研究进展

储晶晶 张莉莉 王志国

储晶晶, 张莉莉, 王志国. 木质素基金属纳米粒子复合材料的制备及其应用研究进展[J]. 复合材料学报, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001
引用本文: 储晶晶, 张莉莉, 王志国. 木质素基金属纳米粒子复合材料的制备及其应用研究进展[J]. 复合材料学报, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001
CHU Jingjing, ZHANG Lili, WANG Zhiguo. Research progress of preparation and application of lignin-based metal nanoparticles composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001
Citation: CHU Jingjing, ZHANG Lili, WANG Zhiguo. Research progress of preparation and application of lignin-based metal nanoparticles composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001

木质素基金属纳米粒子复合材料的制备及其应用研究进展

doi: 10.13801/j.cnki.fhclxb.20200714.001
基金项目: 国家自然科学基金(31870565)
详细信息
    通讯作者:

    王志国,博士,教授,研究方向为林业生物质化学、木质纤维素材料、生物质纳米材料 E-mail:wzg@njfu.edu.cn

  • 中图分类号: TS79;TB332

Research progress of preparation and application of lignin-based metal nanoparticles composites

  • 摘要: 木质素是一种最丰富的芳香族天然高分子生物质资源,木质素纳米粒子既具有木质素原本特点,还具有纳米材料的纳米效应等特性,在众多功能材料领域具有很大的潜在应用价值,特别是作为绿色还原剂直接还原金属离子生成木质素基金属纳米粒子复合材料,被广泛应用于催化领域等。本文综述了木质素纳米粒子的制备及其在金属离子还原和金属纳米粒子负载的研究进展,重点综述了木质素基金属纳米粒子复合材料在不同应用领域的研究进展,最后总结并展望了木质素在金属纳米粒子复合材料制备和应用中面临的机遇和挑战。

     

  • 图  1  木质素的结构单元及其连接方式[6]

    Figure  1.  Structural units of lignin and their connection modes[6]

    图  2  制备木质素纳米粒子的示意图[19]

    Figure  2.  Illustration of procedure for lignin nanoparticles preparation[19]

    LTSL NPs—Long-term stable lignin nanoparticles; RT—Room temperature

    图  3  木质素纳米粒子抗菌的机制[33]

    Figure  3.  Antibacterial mechanism of lignin nanoparticles[33]

    LNP—Lignin nanoparticles; ATP—Adenosine triphosphate

    图  4  木质素还原Ag离子的过程[55]

    Figure  4.  Reduction process of Ag+ by lignin[55]

    图  5  太阳光辐照合成银纳米粒子的机制[73]

    Figure  5.  Mechanism of synthesis of Ag nanoparticles by sunlight irradiation[73]

    nM—nmol/L; NPs—Nanoparticles

    图  6  孵育大肠杆菌的琼脂板: (a) 不含木质素/银纳米粒子; (b) 含有木质素/银纳米粒子; (c)木质素/银纳米粒子复合膜[54]

    Figure  6.  Agar plate for E.coli incubation: (a) Agar plate without lignin/Ag nanoparticles; (b) Agar plate with lignin/Ag nanoparticles; (c) Lignin/Ag nanoparticles composite membrane in agar plate[54]

    图  7  制备木质素基Au纳米粒子复合材料及用于吸附检测Pb2+的过程[63]

    Figure  7.  Preparation of lignin-based Au nanoparticles composite and process for adsorption and detection of Pb2+[63]

    NIR—Near infrared; AuNPs—Au nanoparticles; PVDF—Polyvinylidene fluoride

    图  8  前驱体MIL-77(Ni)原位生成的镍纳米粒子形貌图像[70]

    Figure  8.  Morphology images of Ni nanoparticles formed in situ by precursor MIL-77 (Ni)[70]

    MOF—Metal-organic framework

    图  9  生成Ag-Au双金属和单金属纳米粒子[68]

    Figure  9.  Formation of Au-Ag bimetallic and monometallic nanoparticles[68]

    图  10  木质素基Ag纳米微球的制备过程: (a) Pickering乳液; (b) 聚脲壳木质素微球; (c)木质素基Ag微球[83]

    Figure  10.  Preparation of lignin-based Ag nanospheres: (a) Pickering emulsion; (b) Polyurea shell lignin microsphere; (c) Lignin-based Ag microsphere[83]

    microPCMs—Phase change microcapsules; EDA/DETA—Ethylene diamine/diethylene triamine; IPDI—Isophorone diisocyanate

    表  1  木质素纳米粒子的制备方法及其优缺点

    Table  1.   Preparation of lignin nanoparticles and their advantages and disadvantages

    Preparation methodSize/nmAdvantageDisadvantageRef.
    Sol-gel method0.7–82Mild reaction conditions
    Simple operation
    Controllable size
    Uneven size distribution
    Long production cycle
    Unstable yield
    [11-13]
    Mechanical method15–300Physical method
    Pollution-free
    Smaller size
    Nanosize and structure instability
    Strict process conditions
    [14-16]
    pH conversion sedimentation method100–180Mature method
    Simple operation
    Particle stability
    High lignin solubility required
    Harsh process conditions
    Use of toxic/harmful reagents
    [17-19]
    Self-assembly method100–600Stability in pure water
    Controllable size
    Get hollow particles
    Use of organic chemicals
    Agglomerate in low pH
    Unstable high salt concentration
    [20-22]
    Electrospinning100–800Simple equipment
    Process controllable
    Strong anti-oxidation
    Low yield
    Additional additives needed
    [23-24]
    Supercritical method35–50Small particle size
    Narrow distribution
    Evenly distributed
    Agglomerate when the temperature increases
    The particle size increases with the increase of particle size distribution
    [25-26]
    下载: 导出CSV

    表  2  木质素基纳米粒子复合材料的应用

    Table  2.   Applications of lignin-based nanoparticles composites

    Main effectLignin-based nanocompositeSize/nmLignin specieApplicationRef.
    UV absorption and
    antibacterial
    Lignin nanoparticles 50 Enzymatic lignin Sunscreen cream [29]
    Lignin/PVA membrane 216 Enzymatic lignin Membrane [31]
    Lignin-TiO2 colloid 100–300 Alkali lignin Cosmetics [32]
    Lignin nanoparticles 25–80 Alkali lignin Antibacterial [33]
    Enhancer Lignin nanoparticles 85.8 Medium density Hydrogel [34]
    Lignin nanoparticles 66000–86000 Lignosulfonate Phenolic foam [35]
    Lignin/PVA membrane 195–197 DES/lignin Membrane [36]
    Lignin/resveratrol/Fe3O4
    nanoparticles
    130 Alkali lignin Nanomedicine [37]
    Antioxidant Lignin nanoparticles 40–60 Low sulfonated lignin Membrane [38]
    Lignin nanoparticles 0.144±0.03 Organic solvent lignin Free radical scavenging [39]
    Lignin/PLA membrane 40–60 Primitive lignin Membrane [40]
    Lignin nanoparticles 40–60 Primitive lignin Hydrogel [41]
    Emulsifier Lignin nanoparticles 182 Alkali lignin Emulsifier [42]
    Lignin nanoparticles 200 Kraft lignin Surfactant [43]
    Lignin nanoparticles 30–30000 Alkali/kraft lignin Emulsion [44]
    Lignin nanoparticles 90–1000000 Kraft lignin Pickering system [45]
    Encapsulated Lignin-Fe3O4 nanoparticle 464±15 nm Kraft lignin Coating Fe3O4 [46]
    lignin-protein particles 210–230 Kraft lignin Protein coating [47]
    Lignin-cytotoxic 438 ± 56 Kraft lignin Coating cytotoxic [48]
    Lignin nanocapsules 50–300 Lignosulfonate Coating drug [49]
    Dye/ion adsorption Lignin microspheres 200 Organic solvent lignin Magnetic nanosphere [50]
    Lignin-Fe3O4 nanoparticle 20–40 Alkali lignin Magnetic nanoparticle [51]
    Lignin nanoparticles 450 Lignin in black liquor Phosphate adsorbent [52]
    Lignin-TiO2 nanoparticle 11.36 Kraft lignin Adsorbents [53]
    Notes: PVA—Poly(vinyl alcohol); PLA—Poly(lactic acid); DES—Deep eutectic solvent.
    下载: 导出CSV

    表  3  木质素基金属纳米粒子的制备

    Table  3.   Preparation of lignin-based metal nanoparticles

    Lignin-based metal
    nanocomposite
    Lignin specieMetal ion precursorSize/nmRef.
    Ag nanoparticlesAlkali ligninAgNO35–100[54]
    Acetic acid ligninAgNO324[55]
    Organic solvent ligninAgNO3<100[56]
    Wheat straw ligninAgNO315–20[57]
    Sodium lignosulfonateAgNO320[58]
    Pd nanoparticlesWoodchipPdCl25[59]
    High molecular ligninPdCl21–5[60]
    Kraft/sulfonate ligninPdCl28–20[61]
    Alkali ligninPdCl2<20[62]
    Au nanoparticlesRecovered ligninHAuCl420[63]
    Kraft wood puplHAuCl411–16[64]
    Sodium lignosulfonateAuClK28–6440[65]
    Alkali ligninHAuCl415±7[66]
    Pt nanoparticlesAlkali ligninH2PtCl60.23[67]
    BimetallicKraft ligninAuCl3/AgNO325[68]
    Alkali ligninPd(NH3)Cl2/HAuCl420–50[69]
    Ni nanoparticlesLignocelluloseMIL-77(Ni)100[70]
    Cu2O nanoparticlesLignin in black liquorCuSO4100–200[71]
    Fe nanoparticlesAlkali ligninFe(NO3) 350–150[72]
    下载: 导出CSV

    表  4  木质素基金属纳米粒子复合材料的应用

    Table  4.   Applications of lignin-based metal nanoparticles composites

    ApplicationLignin-based metal nanocompositeComposite size/nmMaterial propertyProductRef.
    UV absorption and antibacterial ZnO nanocomposites 3–5/20–30 UV shield/antibacterial Sunscreen cream [77]
    Ag nanocomposites 5–100 UV shield/antibacterial Membrane [54]
    Ag nanocomposites <100 UV shield/antibacterial Membrane [56]
    Ag nanocomposites 11.2 Antibacterial Membrane [78]
    Ag nanocomposites 5.3 Antibacterial Membrane [79]
    Detection/adsorption chemical substances Ag nanocomposites 24 Select to Hg2+ Detection Hg2+ [55]
    Ag nanocomposites 10–50 Sensitive to H2O2 Detection H2O2 [80]
    Ag nanocomposites 41 Complexation metal ion Detection ion [81]
    Ag nanocomposites 20 Infrared response Detection Pb2+ [63]
    Catalysis Pd nanocomposites 1–5 Catalytic activity Heck reaction [60]
    Pd nanocomposites 8–20 Catalytic activity Heck reaction [61]
    Lignin/Pd nanospheres <20 Catalytic activity Conversion of aromatic compounds [62]
    Ni nanocomposites 100 Catalytic activity Dehydrogenation reaction [70]
    Biological antioxidation Ag nanocomposites 15–20 Antioxidant activity DPPH [57]
    Au nanocomposites 11–16 Antioxidant activity DPPH [64]
    Ag nanocomposites 10–15 Antioxidant activity DPPH [82]
    Au-Ag nanocomposites 25 Antioxidant activity Determination phenolic [68]
    Improve mechanical property Au nanocomposites 28–6440 Thermal stability Thermogravimetry [65]
    Ag nanocomposites 473 Thermal stability Thermogravimetry [83]
    Ag nanocomposites 20 Increase elasticity Hydrogel [58]
    Ag nanocomposites 125–145 Increase adhesion Hydrogel [84]
    下载: 导出CSV
  • [1] MALHERBE S, CLOETE T E. Lignocellulose biodegradation: Fundamentals and applications[J]. Reviews in Environmental Science & Biotechnology,2002,1(2):105-114.
    [2] SHIKINAKA K, OTSUKA Y, NAVARRO R R, et al. Simple and practicable process for lignocellulosic biomass utilization[J]. Green Chemistry,2016,18(22):5962-5966. doi: 10.1039/C6GC01927G
    [3] FANG W, YANG S, WANG X L, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry,2017,19(8):1794-1827. doi: 10.1039/C6GC03206K
    [4] BOERIU C G, BRAVO D, GOSSELINK R J A, et al. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops and Products,2004,20(2):205-218. doi: 10.1016/j.indcrop.2004.04.022
    [5] WANG C, KELLEY S S, VENDITTI R A. Lignin-based thermoplastic materials[J]. ChemSusChem,2016,9(8):770-783. doi: 10.1002/cssc.201501531
    [6] GALL D L, RALPH J, DONOHUE T J, et al. Biochemical transformation of lignin for deriving valued commodities from lignocellulose[J]. Current Opinion in Biotechnology,2017,45:120-126. doi: 10.1016/j.copbio.2017.02.015
    [7] BEISL S, MILTNER A, FRIEDL A. Lignin from micro- to nanosize: Production methods[J]. International Journal of Molecular Sciences,2017,18(6):1244. doi: 10.3390/ijms18061244
    [8] LIEVONEN M, VALLE-DELGADO J J, MATTINEN M L, et al. A simple process for lignin nanoparticle preparation[J]. Green Chemistry,2016,18(5):1416-1422. doi: 10.1039/C5GC01436K
    [9] QIAN Y, DENG Y, QIU X, et al. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor[J]. Green Chemistry,2014,16(4):2156-2163. doi: 10.1039/c3gc42131g
    [10] HU J, CHEN M, FANG X, et al. Fabrication and application of inorganic hollow spheres[J]. Chemical Society Reviews,2011,40(11):5472-5491. doi: 10.1039/c1cs15103g
    [11] BUDNYAK T M, AMINZADEH S, PYLYPCHUK I V, et al. Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method[J]. Nanomaterials,2018,8(11):950. doi: 10.3390/nano8110950
    [12] ABDEL ZAHER K S, SWELLEM R H, NAWWAR G A M, et al. Proper use of rice straw black liquor-lignin-silica derivatives as efficient green antioxidants for SBR rubber[J]. Pigment & Resin Technology,2014,43(3):159-174.
    [13] QU Y, TIAN Y, ZOU B, et al. A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method[J]. Bioresource Technology,2010,101(21):8402-8405. doi: 10.1016/j.biortech.2010.05.067
    [14] ZIMNIEWSKA M, KOZŁOWSKI R, BATOG J. Nanolignin modified linen fabric as a multifunctional product[J]. Molecular Crystals and Liquid Crystals,2008,484(1):43/[409]-50/[416
    [15] NAIR S S, SHARMA S, PU Y, et al. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends[J]. ChemSusChem,2014,7(12):3513-3520. doi: 10.1002/cssc.201402314
    [16] TORTORA M, CAVALIERI F, MOSESSO P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules,2014,15(5):1634-1643. doi: 10.1021/bm500015j
    [17] FRANGVILLE C, RUTKEVICIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem,2012,13(18):4235-4243. doi: 10.1002/cphc.201200537
    [18] DONG R J, ZHENG D F, YANG D J, et al. pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase[J]. Bioresource Technology,2019,294:122133. doi: 10.1016/j.biortech.2019.122133
    [19] MA M, DAI L, SI C, et al. A facile preparation of super long-term stable lignin nanoparticles from black liquor[J]. ChemSusChem,2019,12(24):5239-5245. doi: 10.1002/cssc.201902287
    [20] XIONG F, HAN Y, WANG S, et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly[J]. Industrial Crops and Products,2017,100:146-152. doi: 10.1016/j.indcrop.2017.02.025
    [21] 邓永红, 刘友法, 张伟健, 等. 木质素基偶氮聚合物胶体球的制备[J]. 物理化学学报, 2015, 31(3):505-511. doi: 10.3866/PKU.WHXB201501192

    DENG Y H, LIU Y F, ZHANG W J, et al. Formation of colloidal spheres from a lignin-based azo polymer[J]. Acta Physico-Chimica Sinica,2015,31(3):505-511(in Chinese). doi: 10.3866/PKU.WHXB201501192
    [22] MISHRA P K, WIMMER R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition[J]. Ultrasonics Sonochemistry,2017,35:45-50.
    [23] AGO M, JAKES J E, JOHANSSON L S, et al. Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2012,4(12):6849-6856. doi: 10.1021/am302008p
    [24] RUIZ-ROSAS R, BEDIA J, LALLAVE M, et al. The production of submicron diameter carbon fibers by the electrospinning of lignin[J]. Carbon,2010,48(3):696-705. doi: 10.1016/j.carbon.2009.10.014
    [25] MARTINS G F, PEREIRA A A, STRACÇALANO B A, et al. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions[J]. Sensors and Actuators B: Chemical,2008,129(2):525-530. doi: 10.1016/j.snb.2007.08.051
    [26] MYINT A A, LEE H W, SEO B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry,2016,18(7):2129-2146. doi: 10.1039/C5GC02398J
    [27] LI H, DENG Y, LIU B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 1946-1953.
    [28] XIONG F, HAN Y, WANG S, et al. Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly[J]. ACS Sustainable Chemistry & Engineering,2017,5(3):2273-2281.
    [29] QIAN Y, ZHONG X, LI Y, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor[J]. Industrial Crops and Products,2017,101:54-60. doi: 10.1016/j.indcrop.2017.03.001
    [30] YANG W, DOMINICI F, FORTUNATI E, et al. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly(lactic acid) films before and after accelerated UV weathering[J]. Industrial Crops and Products,2015,77:833-844. doi: 10.1016/j.indcrop.2015.09.057
    [31] XIONG F, WU Y, LI G, et al. Transparent nanocomposite films of lignin nanospheres and poly(vinyl alcohol) for UV-absorbing[J]. Industrial & Engineering Chemistry Research,2018,57(4):1207-1212.
    [32] LI Y, YANG D, LU S, et al. Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering,2019,7(6):6234-6242.
    [33] YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3502-3514.
    [34] BIAN H, JIAO L, WANG R, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal,2018,107:267-274. doi: 10.1016/j.eurpolymj.2018.08.028
    [35] DEL SAZ-OROZCO B, OLIET M, ALONSO M V, et al. Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach[J]. Composites Science and Technology,2012,72(6):667-674. doi: 10.1016/j.compscitech.2012.01.013
    [36] TIAN D, HU J, BAO J, et al. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites[J]. Biotechnology for Biofuels,2017,10:192. doi: 10.1186/s13068-017-0876-z
    [37] DAI L, LIU R, HU L Q, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):8241-8249.
    [38] YANGA W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol-chitosan films for active packaging[J]. Industrial Crops and Products,2016,94:800-811. doi: 10.1016/j.indcrop.2016.09.061
    [39] LU Q, ZHU M, ZU Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry,2012,135(1):63-67. doi: 10.1016/j.foodchem.2012.04.070
    [40] YANG W, FORTUNATI E, DOMINICI F, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films[J]. International Journal of Biological Macromolecules,2016,89:360-368. doi: 10.1016/j.ijbiomac.2016.04.068
    [41] YANG W, FORTUNATI E, BERTOGLIO F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles[J]. Carbohydrate Polymers,2018,181:275-284. doi: 10.1016/j.carbpol.2017.10.084
    [42] WEI Z, YANG Y, YANG R, et al. Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization[J]. Green Chemistry,2012,14(11):3230-3236. doi: 10.1039/c2gc36278c
    [43] MATTINEN M L, VALLE-DELGADO J J, LESKINEN T, et al. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications[J]. Enzyme and Microbial Technology,2018,111:48-56. doi: 10.1016/j.enzmictec.2018.01.005
    [44] AGO M, HUAN S, BORGHEI M, et al. High-throughput synthesis of lignin particles (~30 nm to ~2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces,2016,8(35):23302-23310. doi: 10.1021/acsami.6b07900
    [45] NYPELO T E, CARRILLO C A, ROJAS O J. Lignin supracolloids synthesized from (W/O) microemulsions: Use in the interfacial stabilization of Pickering systems and organic carriers for silver metal[J]. Soft Matter,2015,11(10):2046-2054. doi: 10.1039/C4SM02851A
    [46] FIGUEIREDO P, LINTINEN K, KIRIAZIS A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials,2017,121:97-108. doi: 10.1016/j.biomaterials.2016.12.034
    [47] LESKINEN T, WITOS J, VALLE-DELGADO J J, et al. Adsorption of proteins on colloidal lignin particles for advanced biomaterials[J]. Biomacromolecules,2017,18(9):2767-2776. doi: 10.1021/acs.biomac.7b00676
    [48] FIGUEIREDO P, FERRO C, KEMELL M, et al. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs[J]. Nanomedicine,2017,12(21):2581-2596. doi: 10.2217/nnm-2017-0219
    [49] CHEN N, DEMPERE L A, TONG Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5204-5211.
    [50] LI Y, WU M, WANG B, et al. Synthesis of magnetic lignin-based hollow microspheres: A highly adsorptive and reusable adsorbent derived from renewable resources[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5523-5532.
    [51] LI X, HE Y, SUI H, et al. One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes[J]. Nanomaterials,2018,8(3):162. doi: 10.3390/nano8030162
    [52] LUO X, LIU C, YUAN J, et al. Interfacial solid-phase chemical modification with mannich reaction and Fe(Ⅲ) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6539-6547.
    [53] MASILOMPANE T M, CHAUKURA N, MISHRA S B, et al. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution[J]. International Journal of Biological Macromolecules,2018,120:1659-1666.
    [54] HU S, HSIEH Y L. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent[J]. Carbohydrate Polymers,2015,131:134-141. doi: 10.1016/j.carbpol.2015.05.060
    [55] SHEN Z, LUO Y, WANG Q, et al. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+[J]. ACS Applied Materials & Interfaces,2014,6(18):16147-16155. doi: 10.1021/am504188k
    [56] SHANKAR S, RHIM J W, WON K. Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties[J]. International Journal of Biological Macromolecules,2018,107:1724-1731.
    [57] SARATALE R G, SARATALE G D, GHODAKE G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability[J]. International Journal of Biological Macromolecules,2019,128:391-400. doi: 10.1016/j.ijbiomac.2019.01.120
    [58] LI M, JIANG X, WANG D, et al. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application[J]. Colloids and Surfaces B: Biointerfaces,2019,177:370-376. doi: 10.1016/j.colsurfb.2019.02.029
    [59] CHEN F, GONG A S, ZHU M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment[J]. ACS Nano,2017,11(4):4275-4282. doi: 10.1021/acsnano.7b01350
    [60] MARULASIDDESHWARA M B, KUMAR P R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions[J]. International Journal of Biological Macromolecules,2016,83:326-334. doi: 10.1016/j.ijbiomac.2015.11.034
    [61] COCCIA F, TONUCCI L, D’ALESSANDRO N, et al. Palladium nanoparticles, stabilized by lignin, as catalyst for cross-coupling reactions in water[J]. Inorganica Chimica Acta,2013,399:12-18. doi: 10.1016/j.ica.2012.12.035
    [62] BARAN T, SARGIN I. Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation[J]. International Journal of Biological Macromolecules,2020,155:814-822.
    [63] HAN G, WANG X, HAMEL J, et al. Lignin-AuNPs liquid marble for remotely-controllable detection of Pb2+[J]. Scientific Reports,2016,6:38164. doi: 10.1038/srep38164
    [64] BUMBUDSANPHAROKE N, KO S. The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging[J]. International Journal of Biological Macromolecules,2018,107:1782-1791.
    [65] KONOWAŁ E, MODRZEJEWSKA-SIKORSKA A, MOTYLENKO M, et al. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate[J]. International Journal of Biological Macromolecules,2016,85:74-81. doi: 10.1016/j.ijbiomac.2015.12.071
    [66] ROCCA D M, VANEGAS J P, FOURNIER K, et al. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles[J]. RSC Advances,2018,8(70):40454-40463. doi: 10.1039/C8RA08169G
    [67] LIN X, ZHAO J, WU M, et al. Green synthesis of gold, platinum and palladium nanoparticles by lignin and hemicellulose[J]. Journal of Microbiology and Biotechnology,2016,5(4):14-18.
    [68] CHANDNA S, THAKUR N S, REDDY Y N, et al. Engineering lignin stabilized bimetallic nanocomplexes: Structure, mechanistic elucidation, antioxidant, and antimicrobial potential[J]. ACS Biomaterials Science & Engineering,2019,5(7):3212-3227.
    [69] HAN G, LI X, LI J, et al. Special magnetic catalyst with lignin-reduced Au-Pd nanoalloy[J]. ACS Omega,2017,2(8):4938-4945. doi: 10.1021/acsomega.7b00830
    [70] ČELIČ T B, GRILC M, LIKOZAR B, et al. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation[J]. ChemSusChem,2015,8(10):1703-1710. doi: 10.1002/cssc.201403300
    [71] LI P, LV W, AI S. Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties[J]. Journal of Experimental Nanoscience,2015,11(1):18-27.
    [72] MA Q, CUI L, ZHOU S, et al. Iron nanoparticles in situ encapsulated in lignin-derived hydrochar as an effective catalyst for phenol removal[J]. Environmental Science and Pollution Research,2018,25(21):20833-20840. doi: 10.1007/s11356-018-2285-7
    [73] ZHANG Q, CHEN C, WAN G, et al. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(Ⅱ)[J]. Microchimica Acta,2019,186(11):727. doi: 10.1007/s00604-019-3832-8
    [74] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology,2015,10(9):817-823. doi: 10.1038/nnano.2015.141
    [75] NIX C E, HARPER B J, CONNER C G, et al. Toxicological assessment of a lignin core nanoparticle doped with silver as an alternative to conventional silver core nanoparticles[J]. Antibiotics,2018,7(2):40. doi: 10.3390/antibiotics7020040
    [76] GROSSMAN A, VERMERRIS W. Lignin-based polymers and nanomaterials[J]. Current Opinion in Biotechnology,2019,56:112-120. doi: 10.1016/j.copbio.2018.10.009
    [77] KAUR R, THAKUR N S, CHANDNA S, et al. Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents[J]. Journal of Materials Chemistry B,2020,8(2):260-269. doi: 10.1039/C9TB01569H
    [78] LÜ Q F, ZHANG J Y, YANG J, et al. Self-assembled poly(N-methylaniline)-lignosulfonate spheres: From silver-ion adsorbent to antimicrobial material[J]. Chemistry,2013,19(33):10935-10944. doi: 10.1002/chem.201204113
    [79] LI J, SU M, WANG A, et al. In situ formation of Ag nanoparticles in mesoporous TiO2 films decorated on bamboo via self-sacrificing reduction to synthesize nanocomposites with efficient antifungal activity[J]. International Journal of Molecular Sciences,2019,20(21):5497. doi: 10.3390/ijms20215497
    [80] AADIL K R, BARAPATRE A, MEENA A S, et al. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles[J]. International Journal of Biological Macromolecules,2016,82:39-47. doi: 10.1016/j.ijbiomac.2015.09.072
    [81] MILCZAREK G, REBIS T, FABIANSKA J. One-step synthesis of lignosulfonate-stabilized silver nanoparticles[J]. Colloids and Surfaces B: Biointerfaces,2013,105:335-341. doi: 10.1016/j.colsurfb.2013.01.010
    [82] MARULASIDDESHWARA M B, DAKSHAYANI S S, SHARATH KUMAR M N, et al. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent[J]. Materials Science and Engineering C,2017,81:182-190. doi: 10.1016/j.msec.2017.07.054
    [83] LI X, WANG Y, WANG B, et al. Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver[J]. International Journal of Biological Macromolecules,2020,144:624-631. doi: 10.1016/j.ijbiomac.2019.12.016
    [84] GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry[J]. Nature Communications,2019,10(1):1487. doi: 10.1038/s41467-019-09351-2
    [85] COCCIA F, TONUCCI L, BOSCO D, et al. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions[J]. Green Chemistry,2012,14(4):1073-1078. doi: 10.1039/c2gc16524d
    [86] TIPPAYAWAT P, PHROMVIYO N, BOUEROY P, et al. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity[J]. PeerJ,2016,4:e2589. doi: 10.7717/peerj.2589
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1823
  • HTML全文浏览量:  666
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-15
  • 录用日期:  2020-07-02
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回