留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势

马玉钦 赵亚涛 许威 王杰 陈义 李开府

马玉钦, 赵亚涛, 许威, 等. 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势[J]. 复合材料学报, 2020, 37(10): 2367-2375. doi: 10.13801/j.cnki.fhclxb.20200622.003
引用本文: 马玉钦, 赵亚涛, 许威, 等. 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势[J]. 复合材料学报, 2020, 37(10): 2367-2375. doi: 10.13801/j.cnki.fhclxb.20200622.003
MA Yuqin, ZHAO Yatao, XU Wei, et al. Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2367-2375. doi: 10.13801/j.cnki.fhclxb.20200622.003
Citation: MA Yuqin, ZHAO Yatao, XU Wei, et al. Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2367-2375. doi: 10.13801/j.cnki.fhclxb.20200622.003

高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势

doi: 10.13801/j.cnki.fhclxb.20200622.003
基金项目: 国家自然科学基金(51705389);教育部产学合作协同育人项目(201902004016);中国博士后科学基金(2017M613062);西安电子科技大学新实验开发和新实验设备研制项目(SY1954);西安电子科技大学研究生创新基金(5004-20109195867);西安电子科技大学研究生创新基金(5004-20109205867)。
详细信息
    通讯作者:

    马玉钦,博士,讲师,硕士生导师,研究方向为先进材料成型与制造技术  E-mail:yqma@xidian.edu.cn

  • 中图分类号: TB381

Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite

  • 摘要: 热致形状记忆复合材料(SMPC)是一种能够对外界温度刺激做出响应的智能材料,与传统热致SMPC相比,高导热石墨烯(GR)-碳纤维(CF)混杂增强热致SMPC具有形状记忆性能优良、比强度高和导热性强等一系列优异性能,近年来受到人们广泛的关注并开展了相关研究。本文从形状记忆材料相关历史起源与应用入手,聚焦GR-CF混杂增强热致SMPC研究前沿问题,分别对该复合材料浸渗规律、成型工艺、形状记忆性能强化规律和弯曲失效规律四个方面的国内外研究现状进行了文献综述,并结合现有研究情况对其中出现的难题进行了探讨,最后指出了该热致SMPC未来有待深入研究的方向。

     

  • 图  1  形状记忆材料(SMM)典型应用件[7-8]

    Figure  1.  Typical applications of shape memory materials (SMM)[7-8]

    图  2  碳纤维(CF)增强热致形状记忆复合材料(SMPC)与石墨烯(GR)-CF混杂增强SMPC形状固定-回复对比

    Figure  2.  Comparison of shape fixing-recovery between carbon fiber (CF) enhanced shape memory plastic composite (SMPC) and graphene (GR)-CF hybrid enhanced SMPC

    T—Temperature of material; Tg—Glass transition temperature of material

    图  3  GR-CF混杂增强SMPC浸渗过程示意图[11]

    Figure  3.  Schematic diagram of GR-CF hybrid enhanced SMPC infiltration process[11]

    图  4  不同浸渗压力下碳纤维增强环氧树脂基复合材料弯曲强度对比[11]

    Figure  4.  Comparison of bending strength of carbon fiber reinforced epoxy resin matrix composite under different infiltration pressures[11]

    图  5  真空浸渗热压制备SMPC流程图[28]

    Figure  5.  Flow chart of SMPC prepared by vacuum infiltration hot pressing process[28]

    图  6  真空浸渗热压SMPC试验系统结构[28]

    Figure  6.  Structure of SMPC test system by vacuum infiltration hot pressing[28]

    图  7  65vol% CF增强环氧树脂基复合材料微观组织图[28]

    Figure  7.  Microstructure diagrams of 65vol% CF reinforced epoxy resin matrix composite[28]

    图  8  50vol% CF-50vol%玄武岩纤维(BF)混杂增强环氧树脂基复合材料三点弯曲有限元模型

    Figure  8.  Three-point bending finite element model of 50vol% CF-50vol% basalt fiber (BF) hybrid reinforced epoxy resin composite

    图  9  CF-BF混杂增强环氧树脂基复合材料三点弯曲有限元仿真与试验结果趋势对比

    Figure  9.  Trend comparison of three point bending finite element simulation and test results for CF-BF hybrid reinforced epoxy resin matrix composites

    图  10  不同模压温度下CF增强环氧树脂基SMPC形状固定率和回复率[36]

    Figure  10.  CF reinforced epoxy resin matrix SMPC shape fixation rate and recovery rate at different molding temperatures[36]

    图  11  模压温度70℃时65vol% CF增强环氧树脂基SMPC微观组织图[36]

    Figure  11.  Microstructure diagrams of 65vol% CF reinforced epoxy resin matrix SMPC at mold pressing temperature of 70℃[36]

  • [1] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of American Chemical Society,1932,54(10):3819-3833. doi: 10.1021/ja01349a004
    [2] GRENINGER A B, MOORADIAN V G. Strain transformation in metastable beta copper-zinc and copper-tin alloys[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1938,128:337-368.
    [3] BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics,1963,34(5):1475-1477. doi: 10.1063/1.1729603
    [4] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design,2014,56(14):1078-1113.
    [5] MAHYAR P S, MAHBOD A, MINA N, et al. Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review[J]. European Polymer Journal,2019,117:280-303. doi: 10.1016/j.eurpolymj.2019.05.013
    [6] SOKOLOWSKI W, GHAFFARIAN R. Surface control of cold hibernated elastic memory self-deployable structure[C]. Proceedings of SPIE-The International Society for Optical Engineering, Smart Structures and Materials 2006: Smart Sensor Monitoring Systems and Applications, 2006.
    [7] LIN J K H, KNOLL C F, WILLEY C E. Shape memory rigidizable inflatable (RI) structures for large space systems applications[C]. Proceedings of 47th AIAA/ASME/ASCE-/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006.
    [8] LIU Y P, GALL K, DUNN M L, et al. Thermo-mechanics of shape memory polymers: Uniaxial experiments and constitutive modeling[J]. International Journal of Plasticity,2006,22(2):279-313. doi: 10.1016/j.ijplas.2005.03.004
    [9] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展[J]. 航空学报, 2014, 35(1):29-45.

    LENG Jinsong, SUN Jian, LIU Yanju. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):29-45(in Chinese).
    [10] 马玉钦, 任晓雨, 师阳, 等. 碳纤维复合材料真空浸渍与热压固化成型方: 中国, ZL 201810736127.8[P]. 2018-07-06.

    MA Yuqin, REN Xiaoyu, SHI Yang, et al. Vacuum impregnation and hot-pressing of carbon fiber composites: China, ZL 201810736127.8[P]. 2018-07-06(in Chinese).
    [11] MA Yuqin, ZHAO Yatao, ZHANG Yun, et al. Influence of infiltration pressure on the microstructure and properties of 2D-CFRP prepared by the vacuum infiltration hot pressing molding process[J]. Polymers,2019,11(12):2014. doi: 10.3390/polym11122014
    [12] MORTENSEN A, WONG T. Infiltration of fibrous preforms by a pure metal: Part III. Capillary phenomena[J]. Metallurgical and Materials Transactions A,1990,21(8):2257-2263. doi: 10.1007/BF02647888
    [13] KAPTAY G. The threshold pressure of infiltration into fibrous preforms normal to the fibers’ axes[J]. Composites Science and Technology,2008,68:228-237. doi: 10.1016/j.compscitech.2007.04.023
    [14] SI Wei, ZHANG Yin, SHA Jingjie, et al. Mechanisms of pressure-induced water infiltration process through graphene nanopores[J]. Molecular simulation,2019,45(6):518-524. doi: 10.1080/08927022.2018.1559310
    [15] YU Tongfei, BAI Lifei, XU Zhijun, et al. Molecular simulation of permeation behaviour of ethanol/water molecules with single-layer graphene oxide membranes[J]. Molecular simulation,2018,44(10):840-849. doi: 10.1080/08927022.2018.1464161
    [16] LOUIS E, MIRALLES J A, MOLINA J M. High temperature infiltration at low over pressures: Darcy’s law, the slug-flow hypothesis and percolation[J]. Journal of Materials Science,2015,50(4):1655-1665. doi: 10.1007/s10853-014-8726-x
    [17] CENDER T A, PAVEL S, SURESH G A, et al. Resin film impregnation in fabric prepregs with dual length scale permeability[J]. Composites Part A: Applied Science and Manufacturing,2013,53:118-128. doi: 10.1016/j.compositesa.2013.05.013
    [18] FANG Liangchao, JIANG Jianjun, WANG Junbiao, et al. The effect of nesting on the in plane permeability of unidirectional fabrics in resin transfer molding[J]. Polymer Composites,2016,37(6):1695-1704. doi: 10.1002/pc.23342
    [19] ZHAO Qian, LIANG Yunhong, REN Lei, et al. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion[J]. Nano Energy,2018,51:621-631. doi: 10.1016/j.nanoen.2018.07.025
    [20] NAM K, IM Y, PARK H J, et al. Photoacoustic effect on the electrical and mechanical properties of polymer-infiltrated carbon nanotube fiber/graphene oxide composites[J]. Composites Science and Technology,2017,153:136-144. doi: 10.1016/j.compscitech.2017.10.014
    [21] LU Haibao, YAO Yongtao, HUANG Weimin, et al. Noncovalently functionalized carbon fiber by grafted sele-assembled grapheme oxide and the synergistic effect on polymeric shape memory nanocomposites[J]. Composites Part B: Engineering,2014(67):290-295.
    [22] GAO Jifeng, CHEN Wujun, YU Bing, et al. Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite[J]. Composites Part B: Engineering,2019,159:336-345. doi: 10.1016/j.compositesb.2018.09.029
    [23] LIU Yayun, GUO Yufeng, ZHAO Jun, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177:49-56. doi: 10.1016/j.compscitech.2019.04.014
    [24] GUO Jianming, WANG Zhenqing, TONG Liyong, et al. Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing,2015,76:162-171. doi: 10.1016/j.compositesa.2015.05.026
    [25] 荆祥海. 展开结构用形状记忆环氧复合材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    JIN Xianghai. Study on properties and preparation of shape memory epoxy composites for deployment structure[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [26] LI F F, SCARPA F, LAN X Z, et al. Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2019,116:169-179. doi: 10.1016/j.compositesa.2018.10.037
    [27] 胡晓兰, 周川, 代少伟, 等. 氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能[J]. 复合材料学报, 2020, 37(5):1070-1080.

    HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica,2020,37(5):1070-1080(in Chinese).
    [28] MA Yuqin, WANG Jie, ZHAO Yatao, et al. A new vacuum pressure infiltration CFRP method and preparation experimental study of composite[J]. Polymers,2020,12(2):419. doi: 10.3390/polym12020419
    [29] PARK M, KIM Y, HWANG J O. Shape recovery characteristics of shape memory epoxy composites reinforced with chopped carbon fibers[J]. Carbon Letters,2019,29(3):219-224. doi: 10.1007/s42823-019-00031-1
    [30] KANG S, KANG T H, KIM B S. 2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape memory properties[J]. Composites Part B: Engineering,2019,162:580-588. doi: 10.1016/j.compositesb.2019.01.004
    [31] FEJŐS M. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure[J]. Express Polymer Letters,2013,7(6):528-534. doi: 10.3144/expresspolymlett.2013.49
    [32] NIDHIN D, ZHANG Xu, MANOJB. K, et al. Fabrication of surface modified graphene oxide/unsaturated polyester nanocomposites via in-situ polymerization: Com-prehensive property enhancement[J]. Applied Surface Science,2020,502:144164. doi: 10.1016/j.apsusc.2019.144164
    [33] NISHIKAWA M, WAKATSUKI K, TAKEDA N. Thermomechanical experiment and analysis on shape recovery properties of shape memory polymer influenced by fiber reinforcement[J]. Journal of Materials Science,2010,45(14):3957-3960. doi: 10.1088/1361-6528/ab5042
    [34] LIU Liu, XIAO Linghan, ZHANG Xiuping, et al. Improvement of the thermal conductivity and friction performance of poly (ether ether ketone) /carbon fiber laminates by addition of graphene[J]. RSC Advances,2015,5(71):2637-2645.
    [35] QU Y, WANG S, ZHOU D, et al. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives[J]. Renewable Energy,2020,146:57853-57859.
    [36] MA Yuqin, WANG Jie, LI Shuangshuang, et al. Effect of molding temperature on shape memory performance of SMPC[J]. Integrated Ferroelectrics,2020,209(1):30-39. doi: 10.1080/10584587.2020.1728804
    [37] ZHAO Wei, LIU Liwu, LENG Jinsong. Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite[J]. Composites Part B: Engineering,2019,179:107455. doi: 10.1016/j.compositesb.2019.107455
    [38] VALOROSI F, DE M E, BLANCO-VARELA T. Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits[J]. Compo-sites Science and Technology,2020,185:107848. doi: 10.1016/j.compscitech.2019.107848
    [39] CHEN Y C, DIMITRIS C L. A constitutive theory for shape memory polymers. Part I-Large deformations[J]. Journal of the Mechanics and Physics of Solids,2008,56(5):1752-1765. doi: 10.1016/j.jmps.2007.12.005
    [40] 邵义树. 形状记忆环氧树脂复合材料性能表征及其损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    SHAO Yishu. Characterization of shape memory epoxy resin composite and investigation of damage[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
    [41] MOSHREFZADEH S H, SHOKRIEH M M. Strength calculation of graphene/polymer nanocomposites using the combined laminate analogy and progressive damage model[J]. Mechanics of Materials,2018,127:48-54. doi: 10.1016/j.mechmat.2018.09.002
    [42] MA Yuqin, QI Lehua, ZHANG Ting, et al. Study on defects of 2D-Cf/Al composites prepared by liquid-solid extrusion following vacuum infiltration technique[J]. International Journal of Advanced Manufacturing Technology,2017,88(1):89-96.
  • 加载中
图(11)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  447
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 录用日期:  2020-06-07
  • 网络出版日期:  2020-06-23
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回