留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备

宋金鹏 高姣姣 吕明

宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10): 2552-2560. doi: 10.13801/j.cnki.fhclxb.20200617.003
引用本文: 宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10): 2552-2560. doi: 10.13801/j.cnki.fhclxb.20200617.003
SONG Jinpeng, GAO Jiaojiao, LV Ming. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2552-2560. doi: 10.13801/j.cnki.fhclxb.20200617.003
Citation: SONG Jinpeng, GAO Jiaojiao, LV Ming. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2552-2560. doi: 10.13801/j.cnki.fhclxb.20200617.003

颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备

doi: 10.13801/j.cnki.fhclxb.20200617.003
基金项目: 国家自然科学基金 (51875388;51405326)
详细信息
    通讯作者:

    宋金鹏,博士,副教授,硕士生导师,研究方向为高效加工及数控刀具(包括材料)技术 E-mail:songjinpeng@tyut.edu.cn

  • 中图分类号: TB333

Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure

  • 摘要: 为了制备具有良好综合力学性能的TiCN基金属陶瓷,研究了烧结温度对TiCN-HfN陶瓷微观结构和力学性能的影响,构建了颗粒弥散和核-壳共存的微观结构模型,揭示了材料的致密化机制、增硬机制、增韧补强机制。结果表明:在1 500℃下所制备的TiCN-HfN材料具有颗粒弥散与核-壳共存的微观结构,其中弥散的颗粒为HfN,核为TiCN,壳主要为(Ti, Hf, Mo)CN固溶体;材料具有较好的性能,其相对密度为99.7%、硬度为20.6 GPa、抗弯强度为1 682.5 MPa、断裂韧度为8.5 MPa·m1/2;其致密化机制主要为颗粒和金属液相填充到烧结颈实现致密化,增硬机制主要为致密化和颗粒钉扎强化增硬,增韧补强机制主要为颗粒弥散和颗粒钉扎增韧、骨架结构和颗粒钉扎增强。

     

  • 图  1  TiCN-HfN-Ni-Mo金属陶瓷的XRD图谱

    Figure  1.  XRD patterns of TiCN-HfN-Ni-Mo cermets

    图  2  4种烧结温度下TiCN-HfN-Ni-Mo金属陶瓷的抛光面形貌

    Figure  2.  Polished surface morphologies of TiCN-HfN-Ni-Mo cermets at 4 sintering temperatures

    图  3  图2中A、B、C各点的EDS能谱

    Figure  3.  EDS spectra of point A, point B and point C in Fig.2

    图  4  4种烧结温度下TiCN-HfN-Ni-Mo金属陶瓷的断口形貌

    Figure  4.  Fracture morphologies of TiCN-HfN-Ni-Mo cermets at 4 sintering temperatures

    图  5  烧结温度与TiCN-HfN-Ni-Mo金属陶瓷力学性能间的关系

    Figure  5.  Relationship between sintering temperature and mechanical properties of TiCN-HfN-Ni-Mo cermets

    图  6  颗粒弥散与核-壳共存模型

    Figure  6.  A model of the coexistence microstructure of particle dispersion and core-rim structure

  • [1] 章晓波, 刘宁, 李勇. 碳纳米管增韧超细Ti(C,N)基金属陶瓷[J]. 复合材料学报, 2009, 26(1):91-95. doi: 10.3321/j.issn:1000-3851.2009.01.016

    ZHANG X B, LIU N, LI Y. Ultra-fine Ti(C,N) based cermets toughened by carbon nano-tubes[J]. Acta Materiae Compositae Sinica,2009,26(1):91-95(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.016
    [2] LIN N, ZHAO L B, ZOU J C, et al. Improvement in densification process and properties of Ti(C,N)-based cermets with vanadium carbide addition[J]. Ceramics International,2019,45:2692-2700. doi: 10.1016/j.ceramint.2018.10.210
    [3] QI K F, YANG M, LI S H, et al. Microstructure and oxidation behavior of Ti(C,N)-based cermets with in situ synthesized Ni3Al phase[J]. International Journal of Refractory Metals & Hard Materials,2018,73:157-161.
    [4] LIU Y, HUANG C Z, LIU H L, et al. Mechanical properties and microstructure of Ti(C5N5)-TiB2-(W7Ti3)C composite cutting tool materials[J]. International Journal of Advanced Manufacturing Technology,2015,79:949-957. doi: 10.1007/s00170-015-6898-4
    [5] YIN Z B, YUAN J T, XU W W, et al. Improvement in microstructure and mechanical properties of Ti(C,N) cermet prepared by two-step spark plasma sintering[J]. Ceramics International,2019,45:752-758. doi: 10.1016/j.ceramint.2018.09.241
    [6] ZHOU H J, HUANG C Z, ZOU B, et al. Effects of sintering processes on the mechanical properties and microstructure of Ti(C,N)-based cermet cutting tool materials[J]. International Journal of Refractory Metals and Hard Materials,2014,47:71-79. doi: 10.1016/j.ijrmhm.2014.06.023
    [7] VISHWANATHA H M, ERAVELLY J, KUMAR C S, et al. Dispersion of ceramic nano-particles in the Al-Cu alloy matrix using two step ultrasonic casting and resultant strengthening[J]. Materials Science & Engineering A,2017,708:222-229.
    [8] 刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究[J]. 粉末冶金技术, 2017, 35(5):323-327.

    LIU S J, JI Z, JIA C C, et al. Preparation and properties of nano-AlN particle dispersion strengthened Cu-matrix composite[J]. Powder Metallurgy Technology,2017,35(5):323-327(in Chinese).
    [9] 张宏亮, 刘宁, 刘爱军, 等. WC含量对Ti(C,N)基金属陶瓷抗热震性能的影响[J]. 热处理, 2013, 28(4):17-21. doi: 10.3969/j.issn.1008-1690.2013.04.004

    ZHANG H L, LIU N, LIU A J, et al. Effect of WC content on thermal shock resistance of Ti(C,N)-based cermets[J]. Heat Treament,2013,28(4):17-21(in Chinese). doi: 10.3969/j.issn.1008-1690.2013.04.004
    [10] 于福文, 吴玉程, 陈俊凌, 等. 纳米TiC颗粒弥散增强超细晶钨基复合材料的组织结构与力学性能[J]. 功能材料, 2008, 1(39):139-142.

    YU F W, WU Y C, CHEN J L, et al. Microstructures and mechanical properties of nano-TiCp dispersion strengthened ultra-fine grained W matrix composite[J]. Journal of Functional Materials,2008,1(39):139-142(in Chinese).
    [11] GU M L, HUANG C Z, XIAO S R, et al. Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles[J]. Materials Science and Engineering A,2008,486:167-170. doi: 10.1016/j.msea.2007.09.040
    [12] XIA H Z, WEN X M, FENG Y, et al. Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy[J]. Solar Energy Materials & Solar Cells,2016,150:51-56.
    [13] LEANDRO G G, LUIS Z P, NELLY F R, et al. Influence of nitrogen flow rates on the structure, hardness, and electrical resistivity of HfN coatings by DC sputtering[J]. Journal of Materials Engineering and Performance,2015,24:1558-1564. doi: 10.1007/s11665-014-1377-x
    [14] ESCOBAR C, VILLARREAL M, CAICEDO J C, et al. Novel performance in physical and corrosion resistance HfN/VN coating system[J]. Surface & Coatings Technology,2013,221:182-190.
    [15] SONG J P, CAO L, JIANG L K, et al. Effect of HfN, HfC and HfB2 additives on phase transformation, microstructure and mechanical properties of ZrO2-based ceramics[J]. Ceramics International,2018,44:5371-5377. doi: 10.1016/j.ceramint.2017.12.164
    [16] AN J, SONG J P, LIANG G X, et al. Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials[J]. Materials,2017,10(5):461. doi: 10.3390/ma10050461
    [17] WANG S H, ZHANG Y C, SUN Y, et al. Synthesis and characteristic of SiBCN/HfN ceramics with high temperature oxidation resistance[J]. Journal of Alloys and Compounds,2016,685:828-835. doi: 10.1016/j.jallcom.2016.06.250
    [18] VERMA V, MANOJ K B V. Processing of TiCN-WC-Ni/Co cermets via conventional and spark plasma sintering technique[J]. Transactions of the Indian Institute of Metals,2017,70(3):843-853. doi: 10.1007/s12666-017-1069-y
    [19] 陈敏, 肖玄, 张雪峰. TaC含量对TiCN基金属陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(2):270-275. doi: 10.3969/j.issn.1673-0224.2016.02.013

    CHEN M, XIAO X, ZHANG X F. Effect of TaC content on microstructure and properties of TiCN-based cermets[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(2):270-275(in Chinese). doi: 10.3969/j.issn.1673-0224.2016.02.013
    [20] GAO J J, SONG J P, LV M, et al. Microstructure and mechanical properties of TiC0.7N0.3-HfC cermet tool materials[J]. Ceramics International,2018,44:17895-17904. doi: 10.1016/j.ceramint.2018.06.262
    [21] LI Y, LIU N, ZHANG X B, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets[J]. International Journal of Refractory Metals & Hard Materials,2008,26:190-196.
    [22] 李荣久. 陶瓷-金属复合材料[M]. 第2版, 北京冶金工业出版社, 2004.

    LI R J. Ceramic-metal composites[M]. 2rd Editon. Beijing: Metallurgy Industry Press, 2004 (in Chinese).
    [23] 刘兵, 张茜, 陈慧, 等. 烧结温度对 TiC0.7N0.3-WC-TaC-Mo-(Ni,Co)金属陶瓷材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5):710-716. doi: 10.3969/j.issn.1673-0224.2016.05.008

    LIU B, ZHANG Q, CHEN H, et al. Effect of sintering temperature on the properties and microstructure of TiC0.7N0.3-WC-TaC-Mo-(Ni,Co) cermet[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(5):710-716(in Chinese). doi: 10.3969/j.issn.1673-0224.2016.05.008
    [24] 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T6569—2006[S]. 北京: 中国标准出版社, 2006.

    China State Bureau of Technological Supervision. Chinese National Standards-fine ceramics (advanced ceramics, advanced technical ceramics)-test method for flexural strength of monolithic ceramics at room temperature: GB/T6569—2006[S]. Beijing: Chinese Standard Publishing House, 2006(in Chinese).
    [25] 中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法: GB/T16534—2009[S]. 北京: 中国标准出版社, 2009.

    China State Bureau of Technological Supervision. Chinese National Standards-fine ceramics (advanced ceramics, advanced technical ceramics)-test method for hardness of monolithic ceramics at room temperature: GB/T16534—2009[S]. Beijing: Chinese Standard Publishing House, 2009(in Chinese).
    [26] YIN Z B, YAN S Y, XU W W, et al. Microwave sintering of Ti(C,N) based cermet cutting tool material[J]. Ceramics International,2018,44(1):1034-1040. doi: 10.1016/j.ceramint.2017.10.041
    [27] XIONG H W, WEN Y, GAN X P, et al. Influence of coarse TiCN content on the morphology and mechanical properties of ultrafine TiCN based cermets[J]. Materials Science and Engineering A,2017,682:648-655. doi: 10.1016/j.msea.2016.11.085
    [28] ALVAREDO P, DIOS M, FERRARI B, et al. Understanding of wetting and solubility behavior of Fe binder on Ti(C,N) cermets[J]. Journal of Alloys and Compounds,2019,770:17-25. doi: 10.1016/j.jallcom.2018.07.243
    [29] LIU J B, GUO Z X, XIONG J, et al. Mo element-induced wear behavior evolution of self-lubricant Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials,2019,80:299-304.
    [30] ZHANG H A, YAN J H, ZHANG X, et al. Properties of titanium carbonitride matrix cermets[J]. International Journal of Refractory Metals and Hard Materials,2006,24:236-239. doi: 10.1016/j.ijrmhm.2005.05.009
    [31] 汤振霄, 彭可, 向秋玲, 等. B4C颗粒对C/C-SiC复合材料微观结构与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(6):542-548. doi: 10.3969/j.issn.1673-0224.2019.06.009

    TANG Z X, PENG K, XIANG Q L, et al. Effect of B4C particles on microstructure and mechanical properties of C/C-SiC composites[J]. Materials Science and Engineering of Powder Metallurgy,2019,24(6):542-548(in Chinese). doi: 10.3969/j.issn.1673-0224.2019.06.009
    [32] 李斯, 张宇, 周颖, 等. 纳米Al2O3增韧MoSi2复合陶瓷的性能及机理研究[J]. 郑州大学学报(工学版), 2019, 40(6):62-67.

    LI S, ZHANG Y, ZHOU Y, et al. Properties and mechanism of nano-Al2O3 toughened MoSi2 composite[J]. Journal of Zhengzhou University (Engineering Science),2019,40(6):62-67(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  476
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-06-06
  • 网络出版日期:  2020-06-17
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回