留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用

汤连东 吴袁泊 袁利萍 胡云楚 刘月姣 范友华

汤连东, 吴袁泊, 袁利萍, 等. 磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用[J]. 复合材料学报, 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
引用本文: 汤连东, 吴袁泊, 袁利萍, 等. 磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用[J]. 复合材料学报, 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
TANG Liandong, WU Yuanbo, YUAN Liping, et al. Flame retardant effect of phosphotungstic acid intercalated ZnAl layered double hydroxides and intumescent flame retardant on epoxy-polyamide resin[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
Citation: TANG Liandong, WU Yuanbo, YUAN Liping, et al. Flame retardant effect of phosphotungstic acid intercalated ZnAl layered double hydroxides and intumescent flame retardant on epoxy-polyamide resin[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001

磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用

doi: 10.13801/j.cnki.fhclxb.20200512.001
基金项目: 国家自然科学基金(31670563);湖南省高校生物质复合材料创新平台基金(18K058)
详细信息
    通讯作者:

    袁利萍,博士,副教授,硕士生导师,研究方向为材料阻燃 E-mail:tiansiyuan@126.com

  • 中图分类号: TB332;TQ323.5

Flame retardant effect of phosphotungstic acid intercalated ZnAl layered double hydroxides and intumescent flame retardant on epoxy-polyamide resin

  • 摘要: 采用[PW12O40]3−离子柱撑插层共沉淀法合成的ZnAl硝酸根(NO3-ZnAl)层状双金属氢氧化物(LDHs),制备了PW12O40-ZnAl LDHs,并利用XRD、FTIR、电感耦合等离子体(ICP)、SEM等进行组成和结构的表征。将NO3-ZnAl LDHs和PW12O40-ZnAl LDHs分别与含聚磷酸铵、三聚氰胺、季戊四醇的膨胀阻燃剂(IFRs)复合阻燃环氧-聚酰胺树脂(EP-PA),采用TGA、背温实验和锥形量热实验评价不同ZnAl LDHs与IFRs复合阻燃EP-PA的热及烟气的释放规律。TGA结果表明,PW12O40-ZnAl-IFRs/(EP-PA)复合材料的最大降解速率最小,残炭率最高,说明PW12O40-ZnAl LDHs提高了IFRs/(EP-PA)复合材料高温下的抗氧化能力。背温实验表明,相同热辐射强度下,PW12O40-ZnAl-IFRs/(EP-PA)复合材料的背温达到200℃和300℃用时最长,具有最低的背温升温速率,说明PW12O40-ZnAl LDHs使IFRs/(EP-PA)复合材料耐火能力明显增强。从锥形量热实验数据可知,PW12O40-ZnAl-IFRs使PW12O40-ZnAl-IFRs/(EP-PA)复合材料具有最低的热释放速率峰值(PHRR)、平均热释放速率(MHRR)、平均有效燃烧热(MEHC)和总热释放量(THR),其火势增长指数(FGI)仅为IFRs/(EP-PA)复合材料的14.5%,烟释放总量(TSP)比NO3-ZnAl-IFRs/(EP-PA)复合材料减少了27.6%,比IFRs/(EP-PA)复合材料减少了55.3%。说明PW12O40-ZnAl-IFRs比NO3-ZnAl-IFRs更能有效地减少EP-PA的热量释放,抑制烟气生成。

     

  • 图  1  LDHs-IFRs/(EP-PA)复合材料背温实验示意图

    Figure  1.  Schematic diagram of back temperature experiment for LDHs-IFRs/(EP-PA) composites

    图  2  NO3-ZnAl LDHs和PW12O40-ZnAl LDHs的XRD图谱

    Figure  2.  XRD patterns of NO3-ZnAl LDHs and PW12O40-ZnAl LDHs

    图  3  H3PW12O40·xH2O、NO3-ZnAl LDHs和PW12O40-ZnAl LDHs的FTIR图谱

    Figure  3.  FTIR spectra of H3PW12O40·xH2O, NO3-ZnAl LDHsand PW12O40-ZnAl LDHs

    图  4  NO3-ZnAl LDHs(a)和PW12O40- ZnAl LDHs(b)的SEM图像

    Figure  4.  SEM images of NO3-ZnAl LDHs(a) and PW12O40- ZnAl LDHs(b)

    图  5  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的TG曲线

    Figure  5.  TG curves of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    图  6  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的背温升温曲线

    Figure  6.  Experimental curves of back temperature of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    图  7  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的热释放速率(HRR)曲线

    Figure  7.  Heat release rate(HRR) curves of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    图  8  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的总热释放量(THR)曲线

    Figure  8.  Total heat release (THR) curves of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    图  9  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的烟释放总量(TSP)曲线

    Figure  9.  Total smoke produce(TSP) curves of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    图  10  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料锥形量热实验残炭的数码照片

    Figure  10.  Digital photographs of residual carbon of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites after cone calorimeter experiment

    图  11  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料锥形量热实验残余物的SEM图像

    Figure  11.  SEM images of residue of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites after cone calorimeter experiment

    表  1  层状双金属氢氧化物-膨胀阻燃剂/(环氧-聚酰胺树脂)(LDHs-IFRs/(EP-PA))复合材料配比

    Table  1.   Proportion of layered double hydroxides- intumescent flame retardants/(epoxy-polyamide resin) (LDHs-IFRs/(EP-PA)) composites

    SampleEP/gPA/gIFRs/gLDHs/g
    NO3-ZnAlPW12O40-ZnAl
    IFRs/(EP-PA)10105.0000
    NO3-ZnAl-IFRs/(EP-PA)10103.751.250
    PW12O40-ZnAl-IFRs/(EP-PA)10103.7501.25
    下载: 导出CSV

    表  2  NO3-ZnAl LDHs 和 PW12O40-ZnAl LDHs的XRD衍射参数

    Table  2.   XRD parameters of NO3-ZnAl LDHs and PW12O40-ZnAl LDHs

    Crystal faceNO3-ZnAl LDHsPW12O40-ZnAl LDHs
    2θ/(°)d/nm2θ/(°)d/nm
    (003) 9.94 0.8888 7.96 1.1090
    (006) 19.92 0.4452 18.24 0.4858
    (009) 33.76 0.2651 33.36 0.2682
    (110) 60.30 0.1533 60.40 0.1531
    a/nm 0.3066 0.3061
    c/nm 2.6660 3.3270
    Notes:d—Interplanar distance; θ—Angle of deviation; a=2d(110); c=3d(003).
    下载: 导出CSV

    表  3  NO3-ZnAl LDHs和PW12O40-ZnAl LDHs的元素分析结果

    Table  3.   Elemental analysis results of NO3-ZnAl LDHs and PW12O40-ZnAl LDHs

    SampleZn/wt%Al/wt%W/wt%Chemical formula
    NO3-ZnAl LDHs5.5742.80${\rm{Z}}{{\rm{n}}_{{\rm{0}}{\rm{.76}}}}{\rm{A}}{{\rm{l}}_{{\rm{0}}{\rm{.24}}}}{{\rm{(OH)}}_{\rm{2}}}{{\rm{(N}}{{\rm{O}}_{\rm{3}}}{\rm{)}}_{{\rm{0}}{\rm{.24}}}} \cdot {\rm{0}}{\rm{.59}}{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    PW12O40-ZnAl LDHs3.4722.5037.13${\rm{Z}}{{\rm{n}}_{{\rm{0}}{\rm{.73}}}}{\rm{A}}{{\rm{l}}_{{\rm{0}}{\rm{.27}}}}{{\rm{(OH)}}_{\rm{2}}}{{\rm{(P}}{{\rm{W}}_{{\rm{12}}}}{{\rm{O}}_{{\rm{40}}}}{\rm{)}}_{{\rm{0}}{\rm{.037}}}}{{\rm{(N}}{{\rm{O}}_{\rm{3}}}{\rm{)}}_{{\rm{0}}{\rm{.16}}}}$ $ \cdot {\rm{0}}{\rm{.58}}{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    下载: 导出CSV

    表  4  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的TG数据

    Table  4.   TG data of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    SampleT5%/℃T50%/℃T70%/℃Rmax1/(%·℃−1)Residue at 700℃/%
    IFRs/(EP-PA) 104.9 329.1 410.2 0.71 3.47
    NO3-ZnAl-IFRs/(EP-PA) 86.1 328.3 415.7 0.69 4.42
    PW12O40-ZnAl-IFRs/(EP-PA) 95.1 330.1 426.2 0.66 6.05
    Notes: T5%, T50%, T70%—Temperature corresponding to 5%, 50% and 70% of degradation mass, respectively; Rmax1—Maximum degradation rate.
    下载: 导出CSV

    表  5  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的背温实验结果

    Table  5.   Back temperature test results of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    SampleFire resistance time/sV200℃/(℃·s−1)V300℃/(℃·s−1)
    t200℃t300℃
    IFRs/(EP-PA) 459.5 942.5 0.44 0.33
    NO3-ZnAl-IFRs/(EP-PA) 618.0 916.0 0.32 0.32
    PW12O40-ZnAl-IFRs/(EP-PA) 764.0 1 526.0 0.26 0.20
    Notes: V200℃—Back temperature rising rate at 200℃;V300℃—Back temperature rising rate at 300℃.
    下载: 导出CSV

    表  6  IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的锥形量热实验数据

    Table  6.   Cone calorimetry test data of IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA) composites

    SampleTTI/$ \mathrm{s} $PHRR/
    (kW·m−2)
    MHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    MEHC/
    (MJ·kg−1)
    TSP/
    (m2·m−2)
    FGI/
    (kW·(s·m2)−1)
    IFRs/(EP-PA) 154.0 388.3 140.8 60.6 20.3 4.7 2.35
    NO3-ZnAl-IFRs/(EP-PA) 227.0 317.5 118.5 39.4 20.2 2.9 1.48
    PW12O40-ZnAl-
    IFRs/(EP-PA)
    281.0 136.3 62.3 28.2 14.5 2.1 0.34
    Notes: TTI—Ignition time; PHRR—Peak of heat release rate; MHRR—Mean heat release rate; THR—Total heat release; MEHC—Mean effective heat of combustion; TSP—Total smoke produce; FGI—Fire growth index.
    下载: 导出CSV

    表  7  EP-PA、IFRs/(EP-PA)、NO3-ZnAl-IFRs/(EP-PA)和PW12O40-ZnAl-IFRs/(EP-PA)复合材料的力学性能

    Table  7.   Mechanical properties of EP-PA, IFRs/(EP-PA), NO3-ZnAl-IFRs/(EP-PA) and PW12O40-ZnAl-IFRs/(EP-PA)composites

    SampleTensile strength/MPaTear strength/(N·mm−1)Elongation at break/%
    EP-PA 11.47 42.83 10.87
    IFRs/(EP-PA) 8.12 31.40 16.93
    NO3-ZnAl-IFRs/(EP-PA) 7.86 30.23 19.60
    PW12O40-ZnAl-IFRs/(EP-PA) 8.03 30.62 19.39
    下载: 导出CSV
  • [1] WILLIAMS G R, O'HARE D. Towards understanding, control and application of layered double hydroxide chemistry[J]. Journal of Materials Chemistry,2006,16(30):3065-3074. doi: 10.1039/b604895a
    [2] 段雪, 陆军. 二维纳米复合氢氧化物结构、组装与功能[M]. 北京: 科学出版社, 2013.

    DUAN Xue, LU Jun. Structure, assembly and function of two-dimensional nano composite hydroxide[M]. Beijing: Science Press, 2013(in Chinese).
    [3] 张新可. 改性锌铝水滑石的制备及其协同膨胀阻燃聚烯烃的研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    ZHANG Xinke. Preparation of modified ZnAl hydrotalcite and study on its synergistic expansion and flame retardant polyolefin[D]. Harbin: Harbin University of Science and Technology, 2015(in Chinese).
    [4] GUO D X, SONG X M, TAN L C, et al. A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance[J]. Chemical Engineering Journal,2019,356:955-963. doi: 10.1016/j.cej.2018.09.101
    [5] SHEN Y L, YIN K J, AN C H, et al. Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene[J]. Applied Surface Science,2018,456:1-6. doi: 10.1016/j.apsusc.2018.06.091
    [6] 丁娴, 殷凡文, 彭成栋, 等. Mg-Ni-Al-EDTA柱撑LDHs层状材料的水热合成、结构及性能[J]. 无机化学学报, 2012, 28(4):763-772.

    DING Xian, YIN Fanwen, PENG Chengdong, et al. Hydrothermal synthesis, structural analysis and performance of EDTA pillared Mg-Ni-Al layered double hydroxides (LDHs)[J]. Chinese Journal of Inorganic Chemistry,2012,28(4):763-772(in Chinese).
    [7] 刘跃军, 高鑫, 刘亦武, 等. 多元LDHs/EVA纳米复合材料的制备及性能研究[J]. 功能材料, 2012, 43(15):2009-2013. doi: 10.3969/j.issn.1001-9731.2012.15.010

    LIU Yuejun, GAO Xin, LIU Yiwu, et al. Preparation of plurality LDHs/EVA nanocomposites and its properties[J]. Journal of Functional Materials,2012,43(15):2009-2013(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.15.010
    [8] 尚松川, 杨保俊, 张睿辰, 等. Sb<sub>2</sub>O<sub>3</sub>-ZnMgAl类水滑石的制备及其在软聚氯乙烯阻燃中的应用[J]. 复合材料学报, 2017, 34(8):1667-1673.

    SHANG Songchuan, YANG Baojun, ZHANG Ruichen, et al. Preparation of Sb<sub>2</sub>O<sub>3</sub>-LDHs and its assisting flame retardant effects on soft polyvinyl chloride[J]. Acta Materiae Compositae Sinica,2017,34(8):1667-1673(in Chinese).
    [9] 杨杰, 谢光银. 聚合物-层状双氢氧化物纳米复合材料的研究进展[J]. 合成纤维, 2014, 43(6):41-47.

    YANG Jie, XIE Guangyin. Progress in polymer-layered double hydroxides nano composites[J]. Synthetic Fiber in China,2014,43(6):41-47(in Chinese).
    [10] 郑怡磊, 陈晓, 陈英红, 等. 固相剪切碾磨制备聚丙烯/层状双金属氢氧化物纳米复合材料的力学性能及热稳定性[J]. 高分子材料科学与工程, 2011, 27(5):47-50.

    ZHENG Yilei, CHEN Xiao, CHEN Yinghong, et al. Mechanical properties and thermal stability of polypropylene/layered double hydroxides nanocomposites prepared by solid state shear milling[J]. Polymer Materials Science <italic>&</italic> Engineering,2011,27(5):47-50(in Chinese).
    [11] 徐文总, 李冲冲, 汪贵松, 等. 不同阴离子插层的ZnMgAl层状双氢氧化物对聚氨酯弹性体阻燃抑烟性能的影响[J]. 复合材料学报, 2017, 34(8):1683-1692.

    XU Wenzong, LI Chongchong, WANG Guisong, et al. Effect of ternary layered double hydroxide with different interlayer anions as flame retardant and smoke suppressant on polyurethane elastomer[J]. Acta Materiae Compositae Sinica,2017,34(8):1683-1692(in Chinese).
    [12] 李茜, 杨保俊, 王百年, 等. ZnMgAl-LDHs阻燃剂的改性及其在聚丙烯中的应用[J]. 合肥工业大学学报(自然科学版), 2014, 37(11):1294-1299, 1340.

    LI Xi, YANG Baojun, WANG Bainian, et al. Surface modification of flame retardant ZnMgAl-LDHs and its application to polypropylene[J]. Journal of Hefei University of Technology (Natural Science),2014,37(11):1294-1299, 1340(in Chinese).
    [13] 杨保俊, 薛中华, 王百年,等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报, 2014, 31(2):353-361.

    YANG Baojun, XUE Zhonghua, WANG Bainian, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica,2014,31(2):353-361(in Chinese).
    [14] DING P, KANG B, ZHANG J, et al. Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency[J]. Journal of Colloid And Interface Science,2015,440:46-52. doi: 10.1016/j.jcis.2014.10.048
    [15] HUANG G B, FEI Z D, CHEN X Y, et al. Functionalization of layered double hydroxides by intumescent flame retardant: Preparation, characterization, and application in ethylene vinyl acetate copolymer[J]. Applied Surface Science,2012,258(24):10115-10122. doi: 10.1016/j.apsusc.2012.06.088
    [16] WANG P J, HU X P, LIAO D J, et al. Dual fire retardant action: The combined gas and condensed phase effects of Azo-modified NiZnAl layered double hydroxide on intumescent polypropylene[J]. Industrial <italic>&</italic> Engineering Chemistry Research,2017,56(4):920-932.
    [17] 周友, 刘秀, 王芳, 等. 金属氧化物对膨胀阻燃涂层耐火及成炭性能的影响[J]. 无机材料学报, 2014, 29(9):972-978. doi: 10.15541/jim20130686

    ZHOU You, LIU Xiu, WANG Fang, et al. Effect of metal oxides on fire resistance and char formation of intumescent flame retardant coating[J]. Journal of Inorganic Materials,2014,29(9):972-978(in Chinese). doi: 10.15541/jim20130686
    [18] International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method): ISO 5660—1—2002[S]. Geneva: International Organization for Standardization, 2002.
    [19] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶 拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber vulcanized or thermoplastic: Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [21] MARIAPPAN T. Recent developments of intumescent fire protection coatings for structural steel: A review[J]. Journal of Fire Sciences,2016,34(2):120-163. doi: 10.1177/0734904115626720
    [22] BOURIGOT S, LE-BRAS M, DELOBEL R, et al. Synergistic effect of zeolite in an intumescence process. Study of the interactions between the polymer and the additives[J]. Journal of the Chemical Society Faraday Transactions,1996,92(18):3435-3444. doi: 10.1039/FT9969203435
    [23] XUE Y D, ZHANG S P, YANG W L. Influence of expanded vermiculite on fire protection of intumescent fireproof coatings for steel structures[J]. Journal of Coatings Technology and Research,2015,12(2):357-364. doi: 10.1007/s11998-014-9626-3
    [24] COSTANTINO U, GALLIPOLIA A, NOCCHETTIA M, et al. New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcites[J]. Polymer Degradation and Stability,2005,90(3):586-590. doi: 10.1016/j.polymdegradstab.2005.05.019
    [25] LIN Y J, WANG J R, G. EVANS D, et al. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin[J]. Journal of Physics and Chemistry of Solids,2006,67(5):998-1001.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  317
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-04-22
  • 网络出版日期:  2020-05-12
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回