留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能

李泓 张静 陈可 罗程严 徐春波 梁宸 李波 肖文谦 廖晓玲

李泓, 张静, 陈可, 等. 羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能[J]. 复合材料学报, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001
引用本文: 李泓, 张静, 陈可, 等. 羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能[J]. 复合材料学报, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001
LI Hong, ZHANG Jing, CHEN Ke, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001
Citation: LI Hong, ZHANG Jing, CHEN Ke, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001

羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能

doi: 10.13801/j.cnki.fhclxb.20200423.001
基金项目: 国家自然科学基金(11532004;51603026);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0711);重庆科技学院研究生教育教学改革研究项目(YJG2019y003);重庆科技学院研究生科技创新计划项目(YKJCX1920213)
详细信息
    通讯作者:

    李波,博士,教授,研究方向为纳米医用材料 E-mail:Libo@cqust.edu.cn

    肖文谦,博士,副教授,研究方向为高分子医用材料 E-mail:wqxiao@cqust.edu.cn

  • 中图分类号: TB332;TQ317

Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel

  • 摘要: 采用溶剂热法制备了具有超高长径比的羟基磷灰石(HAP)纳米纤维,并将其与甲基丙烯酸酐改性明胶(GelMA)结合,利用紫外光交联制备了HAP纳米纤维/GelMA复合水凝胶。通过SEM、XRD、力学测试、溶胀测试、降解测试、细胞培养等对HAP纳米纤维/GelMA复合水凝胶进行结构表征和性能测试。SEM断面观察表明,HAP纳米纤维/GelMA水凝胶呈三维孔隙贯通的多孔结构。力学实验表明,HAP纳米纤维能有效增强水凝胶的弹性模量,且随着HAP纳米纤维添加量的增加,力学性能增强效果越明显。溶胀实验表明,当HAP纳米纤维质量分数为5.2wt%~14.2wt%时,HAP纳米纤维复合水凝胶的溶胀率变化不明显,当质量分数为18.2wt%时,溶胀率降低。降解实验表明,HAP纳米纤维的加入能有效保持水凝胶结构形态,使其更加稳定可控。细胞包裹培养实验表明,HAP纳米纤维/GelMA复合水凝胶能为细胞提供良好的三维生长环境,表现出优良的生物相容性。本实验制备的HAP纳米纤维/GelMA复合水凝胶在组织工程领域有着良好的应用前景。

     

  • 图  1  HAP纳米纤维/GelMA复合水凝胶的制备流程

    Figure  1.  Schematic illustration of HAP nanofibers/GelMA composite hydrogel

    图  2  HAP纳米纤维的SEM图像

    Figure  2.  SEM images of HAP nanofibers

    图  3  HAP纳米纤维的XRD图谱(a)和FTIR图谱(b)

    Figure  3.  XRD patterns (a) and FTIR spectrum (b) of HAP nanofibers

    图  4  矿化1天((a1)、(a2))、3天((b1)、(b2))和5天((c1)、(c2))的HAP纳米纤维的SEM图像

    Figure  4.  SEM images of HAP nanofibers mineralized for 1 day ((a1),(a2)), 3 days ((b1),(b2)) and 5 days ((c1),(c2))

    图  5  0 HAP/GelMA((a1)、(a2))、5 HAP/GelMA((b1)、(b2))、10 HAP/GelMA((c1)、(c2))、15 HAP/GelMA((d1)、(d2))和20 HAP/GelMA((e1)、(e2))HAP/GelMA复合水凝胶的SEM图像

    Figure  5.  SEM images of HAP/GelMA composite hydrogels of 0 HAP/GelMA((a1),(a2)), 5 HAP/GelMA((b1),(b2)), 10 HAP/GelMA((c1),(c2)), 15 HAP/GelMA((d1),(d2)) and 20 HAP/GelMA((e1),(e2))

    图  6  0 HAP/GelMA((a1)、(a2))、5 HAP/GelMA((b1)、(b2))和15 HAP/GelMA((c1)、(c2))HAP/GelMA复合水凝胶压缩对比照片

    Figure  6.  Compression contrast digital photos of HAP/GelMA composite hydrogels of 0 HAP/GelMA((a1),(a2)), 5 HAP/GelMA((b1),(b2)) and 15 HAP/GelMA((c1),(c2))

    图  7  不同HAP纳米纤维质量分数的HAP纳米纤维/GelMA复合水凝胶的弹性模量(a)、应力-应变曲线(b)

    Figure  7.  Elastic modulus (a) and strain-stress curves (b) of HAP nanofibers/GelMA composite hydrogels with different HAP nanofibers mass fractions

    图  8  不同HAP纳米纤维质量分数的HAP纳米纤维/GelMA复合水凝胶的溶胀比(插图为溶胀24 h的数码照片)

    Figure  8.  Swelling rate of HAP nanofibers/GelMA composite hydrogel with different HAP nanofibers mass fractions (Inset: Swelling digital photo of 24 h)

    图  9  不同HAP纳米纤维质量分数的HAP纳米纤维/GelMA复合水凝胶在1天、3天和5天的降解率(插图为降解5天的数码照片)

    Figure  9.  Degradation rates of HAP nanofibers/GelMA composite hydrogels with different HAP nanofibers mass fractions at 1 day, 3 days and 5 days (Inset: digital photo of 5 days)

    图  10  不同时间HAP纳米纤维与细胞共培养((a)、(b))和复合水凝胶包裹细胞((c)、(d)、(e))的荧光显微图像

    Figure  10.  Fluorescence microscopic images of cells co-cultured with HAP nanofibers((a),(b)) and HAP/GelMA composite hydrogel encapsulated cells((c),(d),(e)) for different times

    表  1  羟基磷灰石(HAP)纳米纤维/甲基丙烯酸酐改性明胶(GelMA)复合水凝胶编号及含量

    Table  1.   Sample of hydroxyapatite(HAP) nanofibers/gelatin modified by methacrylic anhydride(GelMA) composite hydrogel

    No.HAP/
    mg
    GelMA/
    mg
    Photoinitiator/
    mg
    PBS/
    mL
    Mass fraction/
    wt%
    0HAP/
    GelMA
    0 90 5 1 0
    5HAP/
    GelMA
    5 90 5 1 5.2
    15HAP/
    GelMA
    15 90 5 1 14.2
    20HAP/
    GelMA
    20 90 5 1 18.2
    Note: PBS—Phosphate buffer.
    下载: 导出CSV
  • [1] LUTOLF M P, HUBBELL J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering[J]. Nature Biotechnology,2005,23(1):47-55. doi: 10.1038/nbt1055
    [2] HUNT JA, RUI C, VEEN TV, et al. Hydrogels for tissue engineering and regenerative medicine[J]. Journal of Materials Chemistry B,2014,2(33):5319. doi: 10.1039/C4TB00775A
    [3] ZUO Y, LIU X, WEI D, et al. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon[J]. ACS Applied Materials & Interfaces,2015,7(19):10386-10394.
    [4] 李思迪, 赵孔银, 魏俊富, 等. 磷酸三钙/海藻酸钙复合平板膜的制备及其力学性能[J]. 复合材料学报, 2014, 31(4):1106-1111.

    LI S D, ZHAO K Y, WEI J F, et al. Preparation and mechanical properties of tricalcium phosphate/calcium alginate composite flat sheet membranes[J]. Acta Materiae Compositae Sinica,2014,31(4):1106-1111(in Chinese).
    [5] 刘东, 赵孔银, 宋欢语, 等. 硅酸钙-海藻酸钙复合水凝胶膜的制备及表征[J]. 复合材料学报, 2017, 34(11):23-28.

    LIU D, ZHAO K Y, SONG H Y, et al. Preparation and characterization of calcium silicate-calcium alginate composite hydrogel film[J]. Acta Materiae Composite Sinica,2017,34(11):23-28(in Chinese).
    [6] 乔堃 , 郑裕东, 李佳琪, 等. 纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为[J]. 复合材料学报, 2015, 32(5):45-52.

    QIAO K, ZHENG Y D, LI J Q, et al. Fatigue behavior of nano bacterial cellulose/poly(vinyl alcohol) composite hydrogel in simulated body fluid[J]. Acta Materiae Composite Sinica,2015,32(5):45-52(in Chinese).
    [7] 徐朝阳, 李健昱, 石小梅, 等. 聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(4):708-713.

    XU Z Y, LI J Y, SHI X M, et al. Preparation and properties of polyethylene glycol-modified cellulose nanofibers/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Composite Sinica,2017,34(4):708-713(in Chinese).
    [8] ZHENG Y, HUANG K, YOU X, et al. Hybrid hydrogels with high strength and biocompatibility for bone regeneration[J]. International Journal of Biological Macromolecules, 2017, 104(Pt A):1143-1149.
    [9] BING X, ZHENG P, FEI G, et al. A mineralized high strength and tough hydrogel for skull bone regeneration[J]. Advanced Functional Materials,2016,27(4):1604327.
    [10] 龙星潼, 管娟, 陈新, 等. 基于再生丝蛋白水凝胶的研究前沿[J]. 高等学校化学学报, 2018, 39(1):1-11. doi: 10.7503/cjcu20170635

    LONG X T, GUAN J, CHEN X, et al. Progress in hydrogels based on regenerated silk fibroin[J]. Chemical Journal of Chinese Universities,2018,39(1):1-11(in Chinese). doi: 10.7503/cjcu20170635
    [11] BRUGGEMAN K F, WILLIAMS R J, NISBET D R. Dynamic and responsive growth factor delivery from electrospun and hydrogel tissue engineering materials[J]. Advanced Healthcare Materials,2018,7(1):1700836. doi: 10.1002/adhm.201700836
    [12] 文静, 徐志民, 齐德胜, 等. PLG-g-TA/RGD酶催化交联水凝胶用于透明软骨细胞黏附和三维细胞培养[J]. 高等学校化学学报, 2019, 40(9):2020-2027. doi: 10.7503/cjcu20190148

    WEN J, XU Z M, QI D S, et al. PLG-g-TA/RGD enzyme-catalyzed crosslinked hydrogel for adhesion and three-dimensional culture of hyaline chondrocytes[J]. Chemical Journal of Chinese Universities,2019,40(9):2020-2027(in Chinese). doi: 10.7503/cjcu20190148
    [13] GU L, ZHANG J, LI L, et al. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration[J]. Biomedical Materials,2019,14(4):045001. doi: 10.1088/1748-605X/ab1583
    [14] 颜世峰, 王卫东, 任婕, 等. 聚(L-谷氨酸)水凝胶介导羟基磷灰石的生物矿化[J]. 高等学校化学学报, 2019, 40(4):815-823. doi: 10.7503/cjcu20180718

    YAN S F, WANG W D, REN J, et al. Biomimetic mineralization of hydroxyapatite mediated by poly(L-glutamic acid) hydrogels in simulated body fluid[J]. Chemical Journal of Chinese Universities,2019,40(4):815-823(in Chinese). doi: 10.7503/cjcu20180718
    [15] CUI F Z, LI Y, GE J. Self-assembly of mineralized collagen composites[J]. Materials Science & Engineering R,2007,57(1-6):1-27.
    [16] YUAN H, FERNANDES H, HABIBOVIC P, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(31):13614-13619. doi: 10.1073/pnas.1003600107
    [17] SUN T W, ZHU Y J, CHEN F, et al. Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment[J]. Chemistry-An Asian Journal,2017,12(6):655-664. doi: 10.1002/asia.201601592
    [18] ZUO Y, XIAO W, CHEN X, et al. Bottom-up approach to build osteon-like structure by cell-laden photo-cross-linkable hydrogel[J]. Chemical Communications,2012,48(26):3170-3172. doi: 10.1039/c2cc16744a
    [19] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials,2006,27(15):2907-2915. doi: 10.1016/j.biomaterials.2006.01.017
    [20] NIU X, LIU Z, TIAN F, et al. Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold[J]. Scientific Reports,2017,7:45655. doi: 10.1038/srep45655
    [21] ZHANG K R, GAO H L, PAN X F, et al. Multifunctional bilayer nanocomposite guided bone regeneration membrane[J]. Matter,2019,1(3):770-781. doi: 10.1016/j.matt.2019.05.021
    [22] 汪阮峰, 颜世峰, 胡圳, 等. 原位沉淀法制备CS/nHA多孔复合支架及其性能[J]. 高等学校化学学报, 2019, 40(5):1080-1088. doi: 10.7503/cjcu20180724

    WANG R F, YAN S F, HU Z, et al. Preparation and properties of CS/nHA porous composite scaffold based on in-situ-precipitation method[J]. Chemical Journal of Chinese Universities,2019,40(5):1080-1088(in Chinese). doi: 10.7503/cjcu20180724
    [23] MA T, HL G, HP C, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers[J]. Advanced Materials,2018,30(15):1706435. doi: 10.1002/adma.201706435
    [24] MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308):107.
    [25] 崔国廉, 但年华, 但卫华. 基于多巴胺的黏合水凝胶的制备及表征[J]. 高等学校化学学报, 2017, 38(2):318-325. doi: 10.7503/cjcu20160443

    CUI G L, DAN N H, DAN W H. Preparation and characterization of novel dopamine-based bioadhesive hydrogels[J]. Chemical Journal of Chinese Universities,2017,38(2):318-325(in Chinese). doi: 10.7503/cjcu20160443
    [26] ZHONG M, SUN J, WEI D, et al. Establishing a cell-affinitive interface and spreading space in a 3D hydrogel by introduction of microcarriers and an enzyme[J]. Journal of Materials Chemistry B,2014,2(38):6601-6610. doi: 10.1039/C4TB00887A
    [27] JANG J, OH H, LEE J, et al. A cell-laden nanofiber/hydrogel composite structure with tough-soft mechanical property[J]. Applied Physics Letters,2013,102(21):625.
    [28] CHANG S K, YUN J Y, BAHN S Y, et al. A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration[J]. NPG Asia Materials,2017,9(6):e391. doi: 10.1038/am.2017.71
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1491
  • HTML全文浏览量:  375
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-27
  • 网络出版日期:  2020-04-23
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回