留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能

王彩萍 张家华 王晓杰

王彩萍, 张家华, 王晓杰. 各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能[J]. 复合材料学报, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001
引用本文: 王彩萍, 张家华, 王晓杰. 各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能[J]. 复合材料学报, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001
WANG Caiping, ZHANG Jiahua, WANG Xiaojie. Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001
Citation: WANG Caiping, ZHANG Jiahua, WANG Xiaojie. Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001

各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能

doi: 10.13801/j.cnki.fhclxb.20200401.001
基金项目: 国家自然科学基金(11572320)
详细信息
    通讯作者:

    王晓杰,博士,教授,博士生导师,研究方向为智能材料与结构、振动噪声分析与控制 E-mail:xjwang@iamt.ac.cn

  • 中图分类号: TB333

Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents

  • 摘要: 聚氨酯泡沫(PUFs)被广泛应用于飞机、车辆和许多其他设施中的噪声控制。本文研究的磁性聚氨酯泡沫(MPUFs)是一种新型智能泡沫,其力学和声学特性可通过磁场控制。采用一步全水法制备了添加羟基铁粉颗粒的磁性聚氨酯泡沫(CIPs/MPUFs),在发泡过程中施加一定强度的磁场,磁颗粒沿着外加磁场方向排列成链状有序结构,得到各向异性磁性泡沫。在外加磁场作用下,CIPs/MPUFs内部磁性颗粒发生迁移,材料的力学和声学性能发生改变。实验研究了外加磁场对CIPs/MPUFs力学性能和吸声性能的影响。实验结果表明:在外加磁场条件下,CIPs/MPUFs的储能模量和损耗模量随磁性颗粒含量的增加而增加;CIPs/MPUFs的平均吸声系数变化幅度在1%~7%之间,当颗粒含量为5wt%、制备磁场为200 mT、测试施加1.5 A电流时,CIPs/MPUFs的平均吸声系数增加幅度最大,为6.5%。

     

  • 图  1  各向异性磁性聚氨酯泡沫(MPUFs)的制备过程

    MF—Magnetic field; MDI—Diphenylmethylpropane diisocyanate

    Figure  1.  Preparation process of anisotropic magnetic polyurethane foams (MPUFs)

    图  2  MPUFs力学性能测试平台(a)和力学测试的两种模式(b)

    Figure  2.  Mechanical experiment platform of MPUFs (a) and two modes of mechanical experiment (b)

    图  3  MPUFs流变性能测试平台(a)及震荡和外加磁场方向与颗粒链方向关系(b)

    Figure  3.  Rheology experiment platform of MPUFs (a) and the relationship between the direction of oscillation, external magnetic field and particle chains (b)

    图  4  MPUFs声学测试平台(a)及入射声波、外加磁场方向与颗粒链方向的关系(b)

    Figure  4.  Sound absorption experiment platform of MPUFs (a) and the relationship between the direction of incidental acoustic wave, external magnetic field and particle chains (b)

    图  5  CIPs/ MPUFs试样厚度10 mm处平均磁场与施加电流大小的关系

    Figure  5.  Relationship between the average magnetic field intensity and applied current magnitude of CIPs/ MPUFs sample at 10 mm thickness

    图  6  各向异性CIPs/MPUFs制备时施加的磁场强度与各向异性程度的关系

    Figure  6.  Relationship between magnetic field intensity during the foaming process and the degree of anisotropic CIPs/MPUFs

    图  7  CIPs/ MPUFs的应力-应变曲线(压缩速率为10 mm/min)

    Figure  7.  Stress-strain curves of CIPs/ MPUFs (Compression rate is 10 mm/min) ((a) Parallel to the particle chain direction of 5#, 4# and 6#; (b) Parallel to and perpendicular to the particle chain direction of 5# ; (c) Parallel to and perpendicular to the particle chain direction of 4# ; (d) Parallel to and perpendicular to the particle chain direction of 6#)

    图  8  施加0 mT和500 mT磁场条件下5#(5wt%、200 mT)、 4#(15wt%、200 mT)和6#(40wt%、200 mT)CIPs/MPUFs试样的储能模量(a)和损耗模量(b) (实验温度为25℃)

    Figure  8.  Storage modulus (a) and loss modulus (b) of 5#(5wt%, 200 mT),4#(15wt%, 200 mT) and 6#(40wt%, 200 mT) CIPs/MPUFs samples at 0 mT and 500 mT (Experimental temperature is 25 ℃)

    图  9  0 A(a)和1.5 A(b)电流条件下5#(5wt%, 200 mT)、4#(15wt%, 200 mT)和6#(40wt%, 200 mT) CIPs/MPUFs试样的吸声系数

    Figure  9.  Sound absorption coefficient of 5#(5wt%, 200 mT), 4#(15wt%, 200 mT) and 6#(40wt%, 200 mT) CIPs/MPUFs samples at 0 A(a) and 1.5 A (b)

    图  10  64~500 Hz范围内5#、4#和6#CIPs/MPUFs试样在分别施加0 A和1.5 A电流条件下的平均吸声系数

    Figure  10.  Average sound absorption coefficients of 5#,4# and 6# CIPs/MPUFs samples under 0 A and 1.5 A during the range of 64-500 Hz

    表  1  各向同性和各向异性羰基铁粉(CIPs)/MPUFs配方

    Table  1.   Formulations for the isotropic and anisotropic carbonyl iron powders (CIPs)/MPUFs

    Sample Carbonyl iron particles/wt%Magnetic intensity/mTA componentB component
    Polyether
    polyol/g
    Deionized
    water/g
    DBTDL/
    g
    Silicone
    oil/g
    Carbonyl iron
    particles/g
    MDI/
    g
    1# 15 50 25.000 0.750 0.075 0.500 6.570 17.500
    2# 15 100 25.000 0.750 0.075 0.500 6.570 17.500
    3# 15 150 25.000 0.750 0.075 0.500 6.570 17.500
    4# 15 200 25.000 0.750 0.075 0.500 6.570 17.500
    5# 5 200 25.000 0.750 0.075 0.500 2.190 17.500
    6# 40 200 25.000 0.750 0.075 0.500 17.530 17.500
    Note: DBTDL—Dibutyltin dilaurate.
    下载: 导出CSV
  • [1] ZHANG C, LI J, ZHEN H, et al. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity[J]. Materials & Design,2012,41(Complete):319-325.
    [2] 王永华. 多级仿生耦合材料吸声性能及机制研究[D]. 长春: 吉林大学, 2014.

    WANG Y H. Research on sound absorption properties and mechanisms of multi-level bionic coupling materials[D]. Changchun: Jilin University, 2014 (in Chinese).
    [3] SUNG G, KIM J H. Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient[J]. Korean Journal of Chemical Engineering,2017,34(4):1-7.
    [4] SCHÜMANN M, GÜNTHER S, ODENBACH S. The effect of magnetic particles on pore size distribution in soft polyurethane foams[J]. Smart Materials & Structures,2014,23(7):697-707.
    [5] GONG Q C, WU J K, GONG X L, et al. Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property[J]. RSC Advances,2013,3(10):3241-3248. doi: 10.1039/c2ra22824f
    [6] SORRENTINOL, AURILIA M, FORTE G, et al. Anisotropic mechanical behavior of magnetically oriented iron particle reinforced foams[J]. Journal of Applied Polymer Science,2010,119(2):1239-1247.
    [7] D’AURIA M, DAVINO D, PANTANI R, et al. Polymeric foam-ferromagnet composites as smart lightweight materials[J]. Smart Materials and Structures,2016,25(5):055014. doi: 10.1088/0964-1726/25/5/055014
    [8] DAVINO D, MEI P, SORRENTINO L, et al. Polymeric composite foams with properties controlled by the magnetic field[J]. IEEE Transactions on Magnetics,2012,48(11):3043-3046. doi: 10.1109/TMAG.2012.2198634
    [9] SCARPA F, BULLOUGH W A, LUMLEY P. Trends in acoustic properties of iron particle seeded auxetic polyurethane foam[C]// 60th Annual Meeting of the Divison of Fluid Dynamics. American Physical Society, 2004: 241-244.
    [10] KIM B S, KWON S, JEONG S, et al. Semi-active control of smart porous structure for sound absorption enhancement[J/OL]. Journal of Intelligent Material Systems and Structures, 2019, https://doi.org/10.1177/1045389X19862371
    [11] 王晓杰, 李彬. 一种智能磁性降噪聚氨酯泡沫的制备方法: 中国, 201410649702.2[P]. 2014-11-17.

    WANG Xiaojie, LI Bin. An intelligent magnetic noise reduction polyurethane foam: China, 201410649702.2[P]. 2014-11-17(in Chinese).
    [12] 中华人民共和国国家质量监督检验检疫总局. 声学阻抗管中吸声系数和声阻抗的测量第2部分: 传递函数法: GB/T18696.2—2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Acoustics–Determinatio of sound absorption coefficient and impedance in impedance tubes–Part 2: Transfer function method: GB/T18696.2—2002[S]. Beijing: China Standards Press, 2002 (in Chinese).
    [13] SOTO G, CASTRO A, VECHIATTI N, et al. Biobased porous acoustical absorbers made from polyurethane and waste tire particles[J]. Polymer Testing,2017,57:42-51. doi: 10.1016/j.polymertesting.2016.11.010
    [14] 赵文强. 磁流变塑性体力学性能优化与机理研究[D]. 合肥: 中国科学技术大学, 2019.

    ZHAO Wenqiang. Study on magnetorheological plastomer: The optimization and mechanism of its mechanical properties[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [15] CHEN L, GONG X L, JIANG W Q, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science,2007,42(14):5483-5489. doi: 10.1007/s10853-006-0975-x
    [16] MUHAZELI N S, NORDIN N A, MAZLAN S A, et al. Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method[J]. Journal of Materials Science, 2019, 54(2): 13821.
    [17] 许阳光. 新型磁敏智能软材料(磁流变塑性体)的制备、表征及机理研究[D]. 合肥: 中国科学技术大学, 2014.

    XU Yangguang. Preparation, characterization and mechanism of a novel magneto-sensitive smart soft materials: Magnetorheological plastomers[D]. Hefei: University of science and technology of China, 2014(in Chinese).
    [18] SCHÜMANN, M, SEELIGN, ODENBACH S. The effect of external magnetic fields on the pore structure of polyurethane foams loaded with magnetic microparticles[J]. Smart Materials and Structures,2015,24(10):105028. doi: 10.1088/0964-1726/24/10/105028
    [19] 王彩萍, 孙天宇, 王晓杰. 磁性聚氨酯泡沫的微观形貌及低频吸声性能[J]. 复合材料学报, 2018, 35(1):24-29.

    WANG Caiping, SUN Tianyu, WANG Xiaojie. Study on micro topography and low frequency sound absorption performance of magnetic polyurethane foam[J]. Acta Materiae Compositae Sinica,2018,35(1):24-29(in Chinese).
    [20] 钟祥璋. 建筑吸声材料与隔声材料[M]. 北京: 化学工业出版社, 2012.

    ZHONG X Z. Building sound-absorbing materials and insulation materials[M]. Beijing: Chemical Industry Press, 2012(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  379
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 录用日期:  2020-03-23
  • 网络出版日期:  2020-04-01
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回