留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高孔隙率三维结构木材构建功能复合材料的研究进展

杨蕊 曹清华 梅长彤 洪枢 徐真 李建章

杨蕊, 曹清华, 梅长彤, 等. 高孔隙率三维结构木材构建功能复合材料的研究进展[J]. 复合材料学报, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001
引用本文: 杨蕊, 曹清华, 梅长彤, 等. 高孔隙率三维结构木材构建功能复合材料的研究进展[J]. 复合材料学报, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001
YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials constructed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001
Citation: YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials constructed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1796-1804. doi: 10.13801/j.cnki.fhclxb.20200324.001

高孔隙率三维结构木材构建功能复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20200324.001
基金项目: 江苏省高校自然科学基金重大项目(18KJA220002);江苏省苏北科技专项(SZ-SQ2018018)
详细信息
    通讯作者:

    李建章,博士,教授,研究方向为仿生木基复合材料 E-mail:13681090171@126.com

  • 中图分类号: TB332

Research progress of functional composite materials constructed from high porosity three-dimensional structural wood

  • 摘要: 木材兼具生态友好性和再生性,是符合可持续发展的生态材料。通过选择性去除半纤维素和木质素,将木材制备成具备高孔隙率的三维结构木材,可充分发挥其孔隙率高、纤维排布有序、比表面积大等特点,同时保留木材本身生物相容性好、各向异性突出等优势,在柔性电子设备、污染治理、智能窗户、生物医学、锂电池和建筑材料等领域具有潜在发展潜力。本文总结了以柔性木材、透明木材、木材海绵、碳化木材、木材水凝胶和致密化木材为代表的功能性高孔隙率三维结构木材的形成机制及制备方法,指出了存在的问题,探讨其未来的研究发展方向,以期为新型木基功能材料的研究提供新思路。

     

  • 图  1  “一步化学处理法”制备的柔性三维多孔木片在不同pH条件下的性能比较[18]

    Figure  1.  Performance comparison of flexible three-dimensional porous wood film prepared by one-step chemical treatment under different pH conditions[18]

    图  2  各向异性柔性木纸的设计概念[19]

    Figure  2.  Design concept of anisotropic flexible wood paper[19]

    图  3  光致变色透明木材窗户的模拟应用[33]

    Figure  3.  Simulation application of photochromic transparent wood windows[33]

    图  4  从天然巴沙木直接制成具有弹簧状片状结构的可高度压缩的木质海绵[48]

    CVD—Chemical vapor deposition

    Figure  4.  Highly compressible wood sponge with a spring-shaped sheet structure made directly from natural balsa wood[48]

    图  5  易碎木材碳(WC)和高压缩性的木材碳海绵(WCS)的设计和制造过程[49]

    Figure  5.  Design and manufacture process of brittle wood carbon(WC) and highly compressible wood carbon sponge(WCS)[49]

    图  6  裸Li金属电极和通道排列良好的Li/ C木电极的Li剥离/电镀行为示意图[52]

    SEI—Soild electrolyte interphase

    Figure  6.  Schematic diagram of Li stripping/plating behavior for bare Li metal electrodes and Li/C-wood electrodes with well-aligned channels[52]

    图  7  木材水凝胶结构网络微观示意图[68]

    Figure  7.  Schematic illustration and network microscopic structure of wood hydrogel[68]

    图  8  致密化木材的加工方法

    Figure  8.  Processing approach of densified wood

  • [1] VAY O, BORST K D, HANSMANN C, et al. Thermal conductivity of wood at angles to the principal anatomical directions[J]. Wood Science and Technology,2015,49(3):577-589. doi: 10.1007/s00226-015-0716-x
    [2] CABANE E, KEPLINGER T, MERK V, et al. Renewable and functional wood materials by grafting polymerization within cell walls[J]. Chemsuschem,2014,7(4):1020-1025. doi: 10.1002/cssc.201301107
    [3] LI J, LU Y, YANG D J, et al. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions[J]. Biomacromolecules,2011,12(5):1860-1867. doi: 10.1021/bm200205z
    [4] ZHU H L, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews,2016,116(16):9305-9374. doi: 10.1021/acs.chemrev.6b00225
    [5] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123-133.

    WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae,2014,50(10):123-133(in Chinese).
    [6] 李安鑫, 吕建雄, 蒋佳荔. 木材细胞壁结构及其流变特性研究进展[J]. 林业科学, 2017, 53(12):136-143. doi: 10.11707/j.1001-7488.20171215

    LI A X, LV J X, JIANG J L. A review of wood cell wall structure and its rheological property[J]. Scientia Silvae Sinicae,2017,53(12):136-143(in Chinese). doi: 10.11707/j.1001-7488.20171215
    [7] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Advanced Materials,2016,29(1):1603436.
    [8] HWANG S W, LEE C H, CHENG H, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors[J]. Nano Letters,2015,15(5):2801-2808. doi: 10.1021/nl503997m
    [9] XU S, ZHANG Y H, JIA L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin[J]. Science,2014,344(6179):70-74. doi: 10.1126/science.1250169
    [10] SCHWARTZ G, TEE B C K, MEI J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013,4(1):1859. doi: 10.1038/ncomms2832
    [11] BAO Z N, CHEN X D. Flexible and stretchable devices[J]. Advanced Materials,2016,28(22):4177-4179. doi: 10.1002/adma.201601422
    [12] ZHU B W, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials,2015,28(22):4250-4265.
    [13] ZORLUTUNA P, ANNABI N, CAMCI-UNAL G, et al. Microfabricated biomaterials for engineering 3D tissues[J]. Advanced Materials,2012,24(14):1782-1804. doi: 10.1002/adma.201104631
    [14] SELVAKUMAR M, PAWAR H S, FRANCIS N K, et al. Excavating the role of aloe vera wrapped mesoporous hydroxyapatite frame ornamentation in newly architectured polyurethane scaffolds for osteogenesis and guided bone regeneration with microbial protection[J]. ACS Applied Materials and Interfaces,2016,8(9):5941-5960. doi: 10.1021/acsami.6b01014
    [15] REN L Y, PANDIT V, ELKIN J S, et al. Large-scale and highly efficient synthesis of micro-and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration[J]. Nanoscale,2013,5(6):2337-2345. doi: 10.1039/c3nr33423f
    [16] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG M Y, YANG Z H, WU Z J, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compo-sitae Sinica,2020,37(5):1024-1032(in Chinese).
    [17] 何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2):157-162.

    HE S, XU J, WU Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L.lumber[J]. Journal of Nanjing Forestry University (Natural Sciences),2017,41(2):157-162(in Chinese).
    [18] SONG J, CHEN C, WANG C J, et al. Superflexible wood[J]. ACS Applied Materials and Interfaces,2017,9(28):23520-23527. doi: 10.1021/acsami.7b06529
    [19] JIA C, LI T, CHEN C, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy,2017,36:366-373. doi: 10.1016/j.nanoen.2017.04.059
    [20] WANG M, LI R N, CHEN G X, et al. Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents[J]. ACS Applied Materials and Interfaces,2019,11(15):14313-14321. doi: 10.1021/acsami.9b00728
    [21] FAROOQ M, SIPPONEN M H, SEPPALA A, et al. Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate[J]. ACS Applied Materials and Interfaces,2018,10(32):27407-27415. doi: 10.1021/acsami.8b04376
    [22] MEKONNEN T, MUSSONE P, KHALIL H, et al. Progress in bio-based plastics and plasticizing modifications[J]. Journal of Materials Chemistry A,2013,1(43):13379-13398. doi: 10.1039/c3ta12555f
    [23] LI Y Y, ZHU H L, SHEN F, et al. Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose[J]. Advanced Functional Materials,2014,24(46):7366-7372. doi: 10.1002/adfm.201402129
    [24] FINK S. Transparent wood-a new approach in the functional study of wood structure[J]. Holzforschung,1992,46(5):403-408. doi: 10.1515/hfsg.1992.46.5.403
    [25] WU J M, WU Y, YANG F, et al. Impact of delignification on morphological, optical and mechanical properties of transparent wood[J]. Composites Part A: Applied Science and Manufacturing,2019,117:324-331. doi: 10.1016/j.compositesa.2018.12.004
    [26] 何胜君. 降低瓶胚制品雾度的研究[J]. 合成树脂及塑料, 2011, 28(1):44-47. doi: 10.3969/j.issn.1002-1396.2011.01.011

    HE S J. Study on reduction in haze of PET preform[J]. China Synthetic Resin and Plastics,2011,28(1):44-47(in Chinese). doi: 10.3969/j.issn.1002-1396.2011.01.011
    [27] 林涛, 范晶, 殷学风, 等. 透明木材制备方法研究进展[J]. 现代化工, 2019, 39(8):43-48.

    LIN T, FAN J, YIN X F, et al. Progress in preparation of transparent wood composites[J]. Modern Chemical Industry,2019,39(8):43-48(in Chinese).
    [28] GAN W T, GAO L K, XIAO S L, et al. Transparent magnetic wood composites based on immobilizing Fe<sub>3</sub>O<sub>4</sub> nanoparticles into a delignified wood template[J]. Journal of Materials Science,2016,52(6):3321-3329.
    [29] 李坚, 甘文涛, 高丽坤, 等. 一种荧光透明磁性木材的制备方法: 中国, CN 106313221A[P]. 2017-01-11.

    LI J, GAN W T, GAO L K, et al. A method of making a fluorescent transparent magnetic wood: China, CN 106313221A[P]. 2017-01-11(in Chinese).
    [30] SONG J W, CHEN C J, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554(7691):224-228. doi: 10.1038/nature25476
    [31] VASILEVA E, LI Y Y, SYCHUGOV I, et al. Lasing from organic dye molecules embedded in transparent wood[J]. Advanced Optical Materials,2017,5(10):1700057. doi: 10.1002/adom.201700057
    [32] ZHU M W, SONG J W, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials,2016,28(26):5181-5187. doi: 10.1002/adma.201600427
    [33] WANG L H, LIU Y J, ZHAN X Y, et al. Photochromic transparent wood for photo-switchable smart window applications[J]. Journal of Materials Chemistry C,2019,7(28):8649-8654. doi: 10.1039/C9TC02076D
    [34] MONTANARI C L, LI Y Y, CHEN H, et al. Transparent wood for thermal energy storage and reversible optical transmittances[J]. ACS Applied Materials and Interfaces,2019,11(22):20465-20472. doi: 10.1021/acsami.9b05525
    [35] LI Y Y, FU Q L, YU S, et al. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance[J]. Biomacromolecules,2016,17(4):1358-1364. doi: 10.1021/acs.biomac.6b00145
    [36] ZHU Q, CHU Y, WANG Z K, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A,2013,1(17):5386-5393. doi: 10.1039/c3ta00125c
    [37] WU L, LI L X, LI B C, et al. Magnetic, durable, and superhydrophobic polyurethane@Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@fluoropolymer sponges for selective oil absorption and oil/water separation[J]. ACS Applied Materials and Interfaces,2015,7(8):4936-4946. doi: 10.1021/am5091353
    [38] RUAN C P, AI K L, LI X B, et al. A superhydrophobic sponge with excellent absorbency and flame retardancy[J]. Angewandte Chemie International Edition,2014,53(22):5556-5560. doi: 10.1002/anie.201400775
    [39] HAYASE G, KANAMORI K, FUKUCHI M, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie International Edition,2013,52(7):1986-1989. doi: 10.1002/anie.201207969
    [40] ZHANG A J, CHEN M J, DU C, et al. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton[J]. ACS Applied Materials and Interfaces,2013,5:10201-10206. doi: 10.1021/am4029203
    [41] YU C L, YU C M, CUI L Y, et al. Facile preparation of the porous PDMS oil-absorbent for oil/water separation[J]. Advanced Materials Interfaces,2017,4(3):1600862. doi: 10.1002/admi.201600862
    [42] HAO Y, HU C G, HU Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie International Edition,2012,51(45):11371-11375. doi: 10.1002/anie.201206554
    [43] BI H C, XIE X, YIN K B, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials,2012,22(21):4421-4425. doi: 10.1002/adfm.201200888
    [44] GUI X C, WEI J Q, WANG K L, et al. Carbon nanotube sponges[J]. Advanced Materials,2010,22(5):617-621. doi: 10.1002/adma.200902986
    [45] BERGLUND L A, BURGERT I. Bioinspired wood nanotechnology for functional materials[J]. Advanced Materials,2018,30(19):1704285. doi: 10.1002/adma.201704285
    [46] 魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736.

    WEI Q, LIN S H, FENG X S, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese).
    [47] LI L X, ZHANG J P, WANG A Q. Removal of organic pollutants from water using superwetting materials[J]. The Chemical Record,2018,18(2):118-136. doi: 10.1002/tcr.201700029
    [48] GUAN H, CHENG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [49] CHEN C, SONG J W, ZHU S Z, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem,2018,4(3):544-554. doi: 10.1016/j.chempr.2017.12.028
    [50] 王君妍, 周晶. 锂电池产业的发展趋势研究[J]. 商场现代化, 2019(10):173-175.

    WANG J Y, ZHOU J. Research on the development trend of lithium battery industry[J]. Market Modernization,2019(10):173-175(in Chinese).
    [51] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications,2015,6(1):8058. doi: 10.1038/ncomms9058
    [52] ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences,2017,114(14):3584-3589. doi: 10.1073/pnas.1618871114
    [53] YAN Y H, XU H Y, PENG C X, et al. 3D phosphorus-carbon electrode with aligned nanochannels promise high-areal-capacity and cyclability in lithium-ion battery[J]. Applied Surface Science,2019,489:734-740. doi: 10.1016/j.apsusc.2019.05.329
    [54] WANG Y M, LIN X J, LIU T, et al. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors[J]. Advanced Functional Materials,2018,28(52):1806207. doi: 10.1002/adfm.201806207
    [55] 韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320.

    HAN J Q, WANG H X, QIU Y Y, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese).
    [56] WANG P, SUN J F, LOU Z C, et al. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel[J]. Advanced Materials,2016,28(48):10801-10808. doi: 10.1002/adma.201603632
    [57] MA C B, SHI Y, PENA D A, et al. Thermally responsive hydrogel blends: A general drug carrier model for controlled drug release[J]. Angewandte Chemie International Edition,2015,54(25):7484-7488.
    [58] LEE B P, KONST S R. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry[J]. Advanced Materials,2014,26(21):3415-3419. doi: 10.1002/adma.201306137
    [59] SHIN M K, SPINKS G M, SHIN S R, et al. Nanocomposite hydrogel with high toughness for bioactuators[J]. Advanced Materials,2009,21(17):1712-1715. doi: 10.1002/adma.200802205
    [60] YUK H, LIN S T, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nature Communications,2017,8(1):14230. doi: 10.1038/ncomms14230
    [61] CHEN Z, TO J W F, WANG C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes[J]. Advanced Energy Materials,2014,4(12):1400207. doi: 10.1002/aenm.201400207
    [62] BENIGHT S J, WANG C, TOK J B H, et al. Stretchable and self-healing polymers and devices for electronic skin[J]. Progress in Polymer Science,2013,38(12):1961-1977. doi: 10.1016/j.progpolymsci.2013.08.001
    [63] TEE B C K, WANG C, ALLEN R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications[J]. Nature Nanotechnology,2012,7(12):825-832. doi: 10.1038/nnano.2012.192
    [64] ZHAO Y, LIU B R, PAN L J, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices[J]. Energy and Environmental Science,2013,6(10):2856-2870. doi: 10.1039/c3ee40997j
    [65] SHI Y, PAN L J, LIU B R, et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(17):6086-6091. doi: 10.1039/C4TA00484A
    [66] SHI Y, MA C B, PENG L L, et al. Conductive “smart” hybrid hydrogels with pnipam and nanostructured con-ductive polymers[J]. Advanced Functional Materials,2015,25(8):1219-1225. doi: 10.1002/adfm.201404247
    [67] SHI Y, PENG L L, YU G H, et al. Nanostructured conducting polymer hydrogels for energy storage applications[J]. Nanoscale,2015,7(30):12796-12806. doi: 10.1039/C5NR03403E
    [68] SHI Y, WANG M, MA C B, et al. A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer[J]. Nanoscale,2015,15(9):6276-6281.
    [69] LIU J, TAN C S, YU Z Y, et al. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Advanced Materials,2017,29(10):1604951. doi: 10.1002/adma.201604951
    [70] LIU Z S, CALVERT P. Multilayer hydrogels as muscle-like actuators[J]. Advanced Materials,2000,12(4):288-291. doi: 10.1002/(SICI)1521-4095(200002)12:4<288::AID-ADMA288>3.0.CO;2-1
    [71] ITAGAKI H, KUROKAWA T, FURUKAWA H, et al. Water-induced brittle-ductile transition of double network hydrogels[J]. Macromolecules,2010,43(22):9495-9500. doi: 10.1021/ma101413j
    [72] HU Z Q, CHEN G M. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content[J]. Advanced Materials,2014,26(34):5950-5956. doi: 10.1002/adma.201400179
    [73] KONG W Q, WANG C W, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials,2018,30(39):1801934. doi: 10.1002/adma.201801934
  • 加载中
图(8)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  379
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 录用日期:  2020-03-13
  • 网络出版日期:  2020-03-24
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回