留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能

马恬 朱晨 刘成宝 余辰辰 张文雅 钱君超 陈志刚

马恬, 朱晨, 刘成宝, 等. Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能[J]. 复合材料学报, 2020, 37(9): 2265-2271. doi: 10.13801/j.cnki.fhclxb.20200323.001
引用本文: 马恬, 朱晨, 刘成宝, 等. Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能[J]. 复合材料学报, 2020, 37(9): 2265-2271. doi: 10.13801/j.cnki.fhclxb.20200323.001
MA Tian, ZHU Chen, LIU Chengbao, et al. Facet control of Co-modified CeO2 composite and its thermal-photocatalytic denitration property[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2265-2271. doi: 10.13801/j.cnki.fhclxb.20200323.001
Citation: MA Tian, ZHU Chen, LIU Chengbao, et al. Facet control of Co-modified CeO2 composite and its thermal-photocatalytic denitration property[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2265-2271. doi: 10.13801/j.cnki.fhclxb.20200323.001

Co修饰CeO2复合材料的晶面调控及其光热催化脱硝性能

doi: 10.13801/j.cnki.fhclxb.20200323.001
基金项目: 江苏省自然科学基金(BK20180103; BK20180971);江苏省高校自然科学基金(16KJA430008);江苏省高校优势学科建设工程资助项目;江苏高校水处理技术与材料协同创新中心;苏州市科技发展计划项目(重点产业技术创新—前瞻性应用研究)(SYG201742; SYG201818);苏州市微纳光电材料与传感器重点实验室(SZS201812)
详细信息
    通讯作者:

    刘成宝,博士,副教授,研究方向为光催化材料的结构设计及其在能源和环境领域的应用 E-mail:Lcb@mail.usts.edu.cn

  • #为共同第一作者
  • 中图分类号: TQ426.6

Facet control of Co-modified CeO2 composite and its thermal-photocatalytic denitration property

  • 摘要: 采用一步水热法,通过调节Co与Ce的摩尔比,制备出暴露高活性晶面的Co修饰CeO2复合材料。利用比表面和孔径分析仪、TG-DSC、TEM、SEM、XRD、紫外-可见分光光度计(UV-vis)、XPS、光热催化脱硝技术对Co修饰CeO2复合材料进行全面表征。结果表明,随着Co元素含量的增加,Co修饰CeO2复合材料的比表面积增大,CeO2呈纳米棒状结构,Co与表面氧生成Co3O4,二者的共结晶过程降低了复合材料的结晶表面能,使CeO2主要暴露(200)和(220)高活性晶面,且暴露比例增大。光热催化脱硝结果表明,当Co与Ce摩尔比为15%、煅烧温度为400℃时,Co修饰CeO2复合材料的光热催化效率达到最高,为98%。

     

    1)  #为共同第一作者
  • 图  1  光热催化脱硝性能测试装置

    Figure  1.  Test apparatus for thermal-photocatalytic denitration property

    图  2  Co修饰CeO2复合材料的TG-DSC曲线

    Figure  2.  TG-DSC curves of Co-modified CeO2 composites

    图  3  不同Co与Ce摩尔比的Co修饰CeO2复合材料的XRD图谱

    Figure  3.  XRD patterns of Co-modified CeO2 composites with different molar ratios of Co to Ce

    图  4  不同Co与Ce摩尔比的Co修饰CeO2复合材料的SEM图像

    Figure  4.  SEM images of Co-modified CeO2 composites with different molar ratios of Co to Ce

    图  5  Co与Ce摩尔比为15%的Co修饰CeO2复合材料的TEM图像

    Figure  5.  TEM images of Co-modified CeO2 composites with 15% molar ratio of Co to Ce

    d—Interplanar spacing

    图  6  Co与Ce摩尔比为15%的Co修饰CeO2复合材料的N2吸附-脱附曲线

    Figure  6.  N2 adsorption-desorption curves of Co-modified CeO2 composites with 15% molar ratio of Co to Ce

    SBET—Surface area

    图  7  Co与Ce摩尔比为15%的Co修饰CeO2复合材料的XPS图谱

    Figure  7.  XPS spectra of Co-modified CeO2 composites with 15% molar ratio of Co to Ce

    图  8  不同Co与Ce摩尔比的Co修饰CeO2复合材料的紫外-可见光谱和(αhν)2-曲线

    Figure  8.  UV-vis spectra and (αhν)2- curves of Co-modified CeO2 composites with different molar ratios of Co to Ce

    α—Absorption coefficiency; —Photon energy

    图  9  不同Co与Ce摩尔比的Co修饰CeO2复合材料的NO光热催化曲线

    Figure  9.  NO catalytic curves of Co-modified CeO2 composites with different molar ratios of Co to Ce

  • [1] SONG C, WU L, XIE Y, et al. Air pollution in China: Status and spatiotemporal variations[J]. Environmental Pollution,2017,227:334-347. doi: 10.1016/j.envpol.2017.04.075
    [2] ZHAN D, KWAN M P, ZHANG W, et al. Spatiotemporal variations and driving factors of air pollution in China[J]. International Journal of Environmental Research and Public Health,2017,14(12):1538. doi: 10.3390/ijerph14121538
    [3] 鲁浈浈, 张琪, 栗思琪. CdS-石墨相氮化碳复合光催化剂的制备及其光催化性能[J]. 复合材料学报, 2020, 37(3):662-673.

    LU Zhenzhen, ZHANG Qi, LI Siqi. Preparation and photocatalytic performance of CdS-graphite phase carbon nitride composite photocatalyst[J]. Acta Materiae Compositae Sinica,2020,37(3):662-673(in Chinese).
    [4] 申敏, 牛峰. 基于专利数据分析我国脱硝催化剂产业技术发展状况[J]. 现代化工, 2017, 37(9):12-16.

    SHEN Min, NIU Feng. Analysis on Chinese development situation of denitration catalyst industrial technology based on data of patents[J]. Modern Chemical Industry,2017,37(9):12-16(in Chinese).
    [5] LING S H, JING C Y, ZHANG L J. Analysis flue gas denitration technology for small and medium sized coal-fired industrial boilers[J]. Advanced Materials Research,2015,1092-1093:810-813. doi: 10.4028/www.scientific.net/AMR.1092-1093.810
    [6] 杨加强, 梅毅, 王驰, 等. 湿法烟气脱硝技术现状及发展[J]. 化工进展, 2017, 36(2):695-704.

    YANG Jiaqiang, MEI Yi, WANG Chi, et al. Current status and development of wet flue gas denitration technology[J]. Chemical Industry and Engineering Progress,2017,36(2):695-704(in Chinese).
    [7] LUO G, YONEDA A, KATO K. A novel dry process for simultaneous removal of SO<sub>2</sub> and NO from flue gas in a powder-particle fluidized bed[J]. Chemical Engineering <italic>&</italic> Technology,2015,24(4):361-366.
    [8] LI M, PENG B F, WEI L S, et al. Research on the simultaneous desulfurization and denitrification of fumes by combining ozone oxidation and the double alkali method[J]. Advanced Materials Research,2014,1073-1076:759-763. doi: 10.4028/www.scientific.net/AMR.1073-1076.759
    [9] PANDEY R A, CHANDRASHEKHAR B. Physicochemical and biochemical approaches for treatment of gaseous emissions containing NO<italic><sub>x</sub></italic>[J]. Critical Reviews in Environmental Science and Technology,2014,44(1):34-96. doi: 10.1080/10643389.2012.710430
    [10] 邹海强, 杨隽逸, 郑玉婴, 等. 液相共沉淀法制备MnO<sub>2</sub>/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9):53-58.

    ZOU Haiqiang, YANG Junyi, ZHENG Yuying, et al. Preparation of MnO<sub>2</sub>/CNFs by liquid phase coprecipitation method and its performance in low-temperature denitrification[J]. Journal of Materials Engineering,2018,46(9):53-58(in Chinese).
    [11] YANG A, ZHANG G, YANG G, et al. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria[J]. Bioresource Technology,2017,232:408-411.
    [12] 王巍然, 陈会来, 王元. 燃煤锅炉固态还原剂选择性非催化还原法脱硝[J]. 煤气与热力, 2018, 38(10):1-3, 37.

    WANG Weiran, CHEN Huilai, WANG Yuan. Powder selective non-catalytic reduction for denitrification in coal-fired chain boiler[J]. Gas <italic>&</italic> Heat,2018,38(10):1-3, 37(in Chinese).
    [13] 汪立忠. 选择性催化还原法(SCR)催化剂在玻璃熔窑烟气脱硝中的应用研究[J]. 玻璃与搪瓷, 2019, 47(1):44-48.

    WANG Lizhong. Application of selective catalytic reduction (SCR) catalyst in flue gas denitration of glass furnace[J]. Glass and Enamel,2019,47(1):44-48(in Chinese).
    [14] CHOI S W, CHOI S K, BAE H K. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NO<italic><sub>x</sub></italic> removal using low-temperature SCR with Mn-V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalyst[J]. Journal of the Air <italic>&</italic> Waste Management Association,2015,65(4):485-491.
    [15] 魏强, 孙慧, 钱君超, 等. CeO<sub>2</sub>/石墨烯的合成及其在光催化制氢中的应用[J]. 复合材料学报, 2018, 35(3):684-689.

    WEI Qiang, SUN Hui, QIAN Junchao, et al. Synthesis of CeO<sub>2</sub>/graphene and its application in photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2018,35(3):684-689(in Chinese).
    [16] ZHANG L I, PIERCE J, LEUNG V L, et al. Characterization of ceria’s interaction with NO<italic><sub>x</sub></italic> and NH<sub>3</sub>[J]. The Journal of Physical Chemistry C,2013,117(16):8282-8289. doi: 10.1021/jp401442e
    [17] TUMULURI U, ROTHER G, WU Z. Fundamental understanding of the interaction of acid gases with CeO<sub>2</sub>: From surface science to practical catalysis[J]. Industrial <italic>&</italic> Engineering Chemistry Research,2016,55(14):3909-3919.
    [18] TANG K, LIU W, LI J, et al. The Effect of exposed facets of ceria to the nickel species in nickel-ceria catalysts and their performance in a NO+CO reaction[J]. ACS Applied Materials <italic>&</italic> Interfaces,2015,7(48):26839-26849.
    [19] HUANG B, YU D, SHENG Z, et al. Novel CeO<sub>2</sub>@TiO<sub>2</sub> core-shell nanostructure catalyst for selective catalytic reduction of NO<italic><sub>x</sub></italic> with NH<sub>3</sub>[J]. Journal of Environmental Sciences,2017,55(5):129-136.
    [20] PENG Y, QU R, ZHANG X, et al. The relationship between structure and activity of MoO<sub>3</sub>-CeO<sub>2</sub> catalysts for NO removal: Influences of acidity and reducibility[J]. Chemical Communications (Cambridge, England),2013,49(55):6215-6217. doi: 10.1039/c3cc42693a
    [21] 王金果, 陈菲菲, 曹锋雷, 等. 多孔单晶CeO<sub>2</sub>空壳球的制备及其CO催化氧化性能研究[J]. 上海师范大学学报(自然科学版), 2013, 42(3):288-292.

    WANG Jinguo, CHEN Feifei, CAO Fenglei, et al. Preparation of porous single crystal CeO<sub>2</sub> shell and its catalytic performance for CO catalytic oxidation[J]. Journal of Shanghai Normal University(Natural Sciences),2013,42(3):288-292(in Chinese).
    [22] 文叶轩, 曹爽, 费晓琦, 等. 一步水热法合成具有(001)高能晶面的SO<sub>4</sub><sup>2–</sup>-TiO<sub>2</sub>及其NH<sub>3</sub>-SCR脱硝性能[J]. 催化学报, 2018, 39(4):771-778. doi: 10.1016/S1872-2067(18)63034-7

    WEN Yexuan, CAO Shuang, FEI Xiaoqi, et al. Synthesis of SO<sub>4</sub><sup>2–</sup>-TiO<sub>2</sub> with (001) high energy crystal plane and its NH3-SCR denitrification performance by one-step hydrothermal method[J]. Chinese Journal of Catalysis,2018,39(4):771-778(in Chinese). doi: 10.1016/S1872-2067(18)63034-7
    [23] CHANDRASHEKHAR B, PAI P, MORONE A, et al. Reduction of NO<italic><sub>x</sub></italic> in Fe-EDTA and Fe-NTA solutions by an enriched bacterial population[J]. Bioresource Technology,2013,130:644-651.
  • 加载中
图(9)
计量
  • 文章访问数:  1131
  • HTML全文浏览量:  294
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-03-12
  • 网络出版日期:  2020-03-23
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回