留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/油酸复合物制备的纳米流体导电与润湿性能

关集俱 刘德利 王勇 冯伯华 许雪峰

关集俱, 刘德利, 王勇, 等. 碳纳米管/油酸复合物制备的纳米流体导电与润湿性能[J]. 复合材料学报, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001
引用本文: 关集俱, 刘德利, 王勇, 等. 碳纳米管/油酸复合物制备的纳米流体导电与润湿性能[J]. 复合材料学报, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001
GUAN Jiju, LIU Deli, WANG Yong, et al. Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001
Citation: GUAN Jiju, LIU Deli, WANG Yong, et al. Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001

碳纳米管/油酸复合物制备的纳米流体导电与润湿性能

doi: 10.13801/j.cnki.fhclxb.20200313.001
基金项目: 江苏省自然科学基金青年基金 (BK20170373);国家自然科学基金青年基金 (51805345)
详细信息
    通讯作者:

    关集俱,博士,讲师,研究方向为超分子材料组装、摩擦学、精密加工 E-mail:daweijiju@163.com

  • 中图分类号: TH162;TB332

Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite

  • 摘要: 在碳纳米管(CNTs)的空腔中填充油酸(OA)以制备出CNTs/OA复合物,再以此复合物为添加剂制备一种纳米流体。对比研究了纳米流体的导电性能和润湿性能,考察了添加剂质量浓度、酸处理时间、测试温度、电润湿等条件对上述性能的影响。结果表明,OA被成功填充进CNTs内并形成复合物,填充率约20%,在填充过程中CNTs的端面也得到了化学修饰,CNTs的最佳酸化处理时间为8 h;与普通酸处理CNTs比,复合物在基液中具有更好的分散性和表面活性,能更好地提高纳米流体的导电性、润湿性,复合物的最佳浓度约为0.1%;电润湿条件下,随着电压的升高,复合物浓度高的纳米流体的润湿性能提升更明显,这可能是由于CNTs被OA填充后,其自身的电导率和电容得到提高,其所制备的纳米流体也具有更好的导电性和电容量特性。

     

  • 图  1  接触角的测量与电润湿测量接触角(EWOD)的原理

    Figure  1.  Measurement of contact angle and measurement schematic diagram of electrowetting on dielectric (EWOD)

    图  2  碳纳米管(CNTs)、酸处理CNTs、油酸(OA)和CNTs/OA复合物的FTIR图谱

    Figure  2.  FTIR spectra of cabron nanotubes (CNTs), acidified CNTs, oleic acid (OA) and CNTs/OA composite

    图  3  CNTs、酸处理CNTs、CNTs/OA复合物的TEM图像和复合物的分子模型

    Figure  3.  TEM images of CNTs, acidified CNTs, CNTs/OA composite and molecular model of the composite

    图  4  CNTs、酸处理CNTs、OA和CNTs/OA复合物的TG和DSC曲线

    Figure  4.  TG and DSC curves of CNTs, acidified CNTs, OA and the CNTs/OA composite

    图  5  CNTs浓度和酸处理时间对两种纳米流体电导率影响

    Figure  5.  Effects of CNTs content and acidification time on electrical conductivity of two nanofluids

    图  6  CNTs浓度和酸处理时间对两种纳米流体润湿性的影响

    Figure  6.  Effects of content of CNTs and acidification time on wettability of the nanofluids

    图  7  测试电场电压和温度对不同CNTs/OA复合物质量分数的纳米流体润湿性的影响

    Figure  7.  Effect of voltage and temperature on wettability of the nanofluids prepared by different mass fractions of CNTs/OA composite

  • [1] WILLIAMS J A. The action of lubricants in metal cutting[J]. Journal Mechanical Engineering Science,1977,19(5):202-212. doi: 10.1243/JMES_JOUR_1977_019_044_02
    [2] 韩荣第, 张悦, 王扬. 刀—屑接触区摩擦润滑的毛细管模型研究[J]. 润滑与密封, 2009, 34(2):1-4. doi: 10.3969/j.issn.0254-0150.2009.02.001

    HAN Rongdi, ZHANG Yue, WANG Yang. Study on capillary model of tool-chip interface friction and lubricating[J]. Lubrication Engineering,2009,34(2):1-4(in Chinese). doi: 10.3969/j.issn.0254-0150.2009.02.001
    [3] PARK K H, EWALD B, KWON P Y. Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling[J]. Journal of Tribology,2011,133(3):3526-3537.
    [4] LI B K, LI C H, ZHANG Y B, et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil[J]. Journal of Cleaner Production,2017,154:1-11. doi: 10.1016/j.jclepro.2017.03.213
    [5] 王治宇, 赵宗彬, 邱介山. 碳纳米管填充技术研究[J]. 化学进展, 2006, 18(5):563-572. doi: 10.3321/j.issn:1005-281X.2006.05.007

    WANG Zhiyu, ZHAO Zongbin, QIU Jieshan. Development of filling carbon nanotubes[J]. Progress in Chemistry,2006,18(5):563-572(in Chinese). doi: 10.3321/j.issn:1005-281X.2006.05.007
    [6] 魏智强, 李维学, 冯旺军. 纳米镍颗粒填充碳纳米管的制备与磁性能[J]. 复合材料学报, 2012, 29(6):124-128.

    WEI Zhiqiang, LI Weixue, FENG Wangjun. Preparation and magnetic property of Ni nanoparticles filled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2012,29(6):124-128(in Chinese).
    [7] 宣益民, 李强. 纳米流体强化传热研究[J]. 工程热物理学报, 2000, 21(4):466-470. doi: 10.3321/j.issn:0253-231X.2000.04.018

    XUAN Yimin, LI Qiang. Heat transfer enhancement of nanofluids[J]. Journal of Engineering Thermophysics,2000,21(4):466-470(in Chinese). doi: 10.3321/j.issn:0253-231X.2000.04.018
    [8] ALAA Mohamed. Tribological behavior of carbon nanotubes as an additive oil lithium grease[J]. Journal of Tribology,2015,137(1):l-5.
    [9] TANG B L, CHEN G X, CHEN Q F. Research and Manufacture of nano-silver conductive ink[J]. Advanced Materials Research,2011,174:405-408.
    [10] LI Y, WU H A, WANG F C. Effect of a single nanoparticle on the contact line motion[J]. Langmuir,2016,32(48):12676-12685. doi: 10.1021/acs.langmuir.6b03595
    [11] HUANG S Q, LV T, WANG M, et al. Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process[J]. International Journal of Advanced Manufacturing Technology,2018,94(1-4):655-666. doi: 10.1007/s00170-017-0935-4
    [12] 杨林初, 汤正成, 苏宇. 静电雾化切削的雾化形态研究[J]. 江苏科技大学学报, 2018, 32(5):684-689.

    YANG Linchu, TANG Zhengcheng, SU Yu. Investigation on atomization form of electrostatic atomization cutting[J]. Journal of Jiangsu University of Science and Technology,2018,32(5):684-689(in Chinese).
    [13] GHERMAN C, TUDOR M C, CONSTANTIN B, et al. Pharmacokinetics evaluation of carbon nanotubes using FTIR analysis and histological analysis[J]. Journal of Nanoscience and Nanotechnology,2015,15(4):2865-2869. doi: 10.1166/jnn.2015.9845
    [14] 晋卫军, 孙旭峰, 王煜. 碳纳米管溶解性及其化学修饰[J]. 新型炭材料, 2004, 19(4):312-317. doi: 10.3321/j.issn:1007-8827.2004.04.013

    JIN Weijun, SUN Xufeng, WANG Yu. Solubilization and functionalization of carbon nanotubes[J]. New Carbon Materials,2004,19(4):312-317(in Chinese). doi: 10.3321/j.issn:1007-8827.2004.04.013
    [15] SINHA-RAY S, SAHU R P, YARIN A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823-8827.
    [16] BERBER S, KWON Y K, TOMANEK D. Unusually high thermalconductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4616. doi: 10.1103/PhysRevLett.84.4613
    [17] 安宁丽, 李嘉宾, 叶静静, 等. Fe3O4-碳纳米管/聚偏氟乙烯复合材料的制备与性能[J]. 复合材料学报, 2018, 35(12):3247-3252.

    AN Ningli, LI Jiabin, YE Jingjing, et al. Preparation and properties of Fe3O4-carbon nanotubes/polyvinylidene fluoride composite[J]. Acta Materiae Compositae Sinica,2018,35(12):3247-3252(in Chinese).
    [18] GLORY J, BONETTI M, HELEZEN M, et al. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 103(9): 094309-1-7.
    [19] GRUJICIC M, CAO G, ROY W N. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials[J]. Journal of Materials Science, 2004, 39: 4441-4449.
    [20] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivityof individual carbon nanotubes[J]. Nature,1996,382(6586):54-56. doi: 10.1038/382054a0
    [21] DUJARDIN E, EBBESEN T W, HIURA H, et al. Capillarity andwetting of carbon nanotubes [J]. Science, 1994, 265 (5180): 1850-1852.
    [22] 沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 北京: 化学工业出版社, 2012: 109-111.

    SHEN Zhong, ZHAO Zhenguo, KANG Wanli. Colloid and surface chemistry[M]. Beijing: China Chemical Industry Press, 2012: 109-111(in Chinese).
    [23] 刘洪国, 孙德军, 郝京诚. 新编胶体与界面化学[M]. 北京: 化学工业出版社, 2016: 110-112.

    LIU Hongguo, SUN Dejun, HAO Jingcheng. New colloid and interface chemistry[M]. Beijing: China Chemical Industry Press, 2016: 110-112(in Chinese).
    [24] LU G, DUAN Y Y, WANG X D. Surface tension, viscosity, and rheology of water-based nanofluids: A microscopic interpretation on the molecular level[J]. Journal of Nanoparticle Research,2014,16:2564. doi: 10.1007/s11051-014-2564-2
    [25] TANVIR S, QIAO L. Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters,2012,7(1):226. doi: 10.1186/1556-276X-7-226
    [26] KARTHIKEYAN A, COULOMBE S, KIETZIG A M. Wetting behavior of multi-walled carbon nanotube nanofluids[J]. Nanotechnology,2017,28(10):105706. doi: 10.1088/1361-6528/aa5a5f
    [27] WALKER S W, SHAPIRO B. Modeling the fluid dynamics of electrowetting on dielectric(EWOD)[J]. Journal of Microelectromechanical Systems,2006,15(4):986-1000. doi: 10.1109/JMEMS.2006.878876
    [28] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社. 2012: 228-232.

    ZHAO Yapu. Physical and mechanics of surface and interface[M]. Beijing: China Science Press, 2012: 228-232(in Chinese).
    [29] KUMARR, MILANOVA D. Effect of surface tension on nanotubenanofluids[J]. Applied Physics Letters,2009,94(4):227. doi: 10.1063/1.3085766
  • 加载中
图(7)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  313
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 录用日期:  2020-02-25
  • 网络出版日期:  2020-03-13
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回