留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子筛包嵌Ag团簇新型双功能材料用于水体杀菌

张志杨 高卫民

张志杨, 高卫民. 分子筛包嵌Ag团簇新型双功能材料用于水体杀菌[J]. 复合材料学报, 2020, 37(10): 2543-2551. doi: 10.13801/j.cnki.fhclxb.20200311.001
引用本文: 张志杨, 高卫民. 分子筛包嵌Ag团簇新型双功能材料用于水体杀菌[J]. 复合材料学报, 2020, 37(10): 2543-2551. doi: 10.13801/j.cnki.fhclxb.20200311.001
ZHANG Zhiyang, GAO Weimin. Ag clusters enclosed into zeolite as a new bi-functional material for water sterilization[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2543-2551. doi: 10.13801/j.cnki.fhclxb.20200311.001
Citation: ZHANG Zhiyang, GAO Weimin. Ag clusters enclosed into zeolite as a new bi-functional material for water sterilization[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2543-2551. doi: 10.13801/j.cnki.fhclxb.20200311.001

分子筛包嵌Ag团簇新型双功能材料用于水体杀菌

doi: 10.13801/j.cnki.fhclxb.20200311.001
基金项目: 南京市科技计划(201805015);中华全国总工会职工创新补助资金(2017-1203)
详细信息
    通讯作者:

    张志杨,博士,工程师,研究方向为分子筛基复合材料设计和性能 E-mail:15751863907@163.com

  • 中图分类号: TB331

Ag clusters enclosed into zeolite as a new bi-functional material for water sterilization

  • 摘要: 为了有效杀死水体中大肠杆菌并同时吸附其死亡过程中释放的内毒素,采用原位合成法首次合成了X型分子筛包嵌Ag纳米团簇的新型双功能材料(Ag@NaX),高倍透射电镜和扫描透射电镜分析结果表明该材料中Ag纳米团簇分布均一、平均尺寸在1.03 nm,且大部分Ag纳米团簇位于分子筛的孔道中。将材料用于水体中大肠杆菌的去除,该材料表现出非常优异的杀菌性能,当杀菌时间保持在20 min,2.5 mg/100 mL的材料使用量(Ag的负载量质量分数约为1.07wt%)就可以完全杀死水体中的大肠杆菌,并且分子筛可以快速高效地吸附大肠杆菌死亡过程中释放的内毒素,使水体中内毒素的含量能够保持在8×10−9g/100 mL,低于相关饮用水规定中内毒素含量的安全标准。在Ag纳米粒子与分子筛的密切协同下该复合材料同时具备优异的杀菌和吸附的双重功能。分子筛骨架可以有效地阻碍Ag纳米团簇的流失,使材料具有非常优异的稳定性,在多次使用后,材料的杀菌性能仍然能够得到较好的保持。

     

  • 图  1  X型分子筛包嵌Ag纳米团簇(Ag@NaX)双功能材料制备流程示意图

    Figure  1.  Schematic diagram of the preparation process of bi-functional material of Ag naoclusters (Ag@NaX) enclosed into X-zeolite

    图  2  NaX、Ag2O@NaX和Ag@NaX复合材料的XRD图谱(a)、N2吸附-脱附曲线(b)和FTIR图谱(c)

    Figure  2.  XRD spectra(a), N2 adsorption/desorption isotherms(b) and FTIR spectra(c) of NaX, Ag2O@NaX and Ag@NaX composites

    图  3  Ag@NaX复合材料的HR-TEM图像和Ag纳米团簇尺寸分布(a)以及SEM图像和EDX分析结果(b)

    Figure  3.  HR-TEM image and size distribution of Ag nanoclusters(a) and SEM image and EDX analysis results(b) of Ag@NaX composites

    图  4  Ag@NaX复合材料使用前后的XRD图谱

    Figure  4.  XRD spectra of Ag@NaX composite before and after being used

    图  5  Ag@NaX复合材料使用后的HR-TEM图像和Ag纳米团簇尺寸分布

    Figure  5.  HR-TEM image and size distribution of Ag nanoclusters for Ag@NaX-used

    图  6  Ag@NaX复合材料用于水体杀菌机制示意图

    Figure  6.  Schematic diagram of of the mechanism of water sterilization by Ag@NaX composite

    表  1  Ag@NaX复合材料和NaX样品的X射线荧光光谱分析结果

    Table  1.   Analysis results of X-ray fluorescence spectrum for Ag@NaX composite and NaX

    SampleSiO2/wt%Al2O3/wt%Na2O/wt%Ag2O/wt%Others/wt%Chemical formulaAg content/wt%
    NaX 50.63 32.97 16.19 - 0.21 Na83Al83Si109O384 -
    Ag@NaX 50.95 33.10 14.25 1.15 0.55 Ag@Na78.5Al83Si109O384 1.07
    下载: 导出CSV

    表  2  NaX和Ag@NaX复合材料的杀菌性能

    Table  2.   Sterilization performance of NaX and Ag@NaX composite

    Concentration/(mg·(100 mL)−1)Number of bacterial colony/(CFU·(100 mL)−1)Disinfection rate/%
    1 min5 min10 min20 min30 min60 min1 min10 min60 min
    a1.0 1 400 56 25 8 5 2 89.23 99.81 99.99
    a2.5 250 14 0 0 0 0 98.08 100 100
    a5.0 0 0 0 0 0 0 100 100 100
    b5.0 11 500 10 430 10 200 10 250 10 230 10 120 13.04 21.54 22.15
    Notes: a—Ag@NaX; b—NaX.
    下载: 导出CSV

    表  3  Ag@NaX复合材料对杀菌过程中释放出的内毒素的吸附性能

    Table  3.   Adsorption performance of released endotoxin during the sterilization for Ag@NaX composite

    Concentration/(mg·(100 mL)−1)Endotoxin concentration/(4×10−10(g·100 mL)−1)Adsorption rate/%
    1 min5 min10 min20 min30 min60 min1 min10 min60 min
    1.0 109 106 118 76 69 54 78.2 76.4 89.2
    2.5 35 24 21 20 20 20 93.0 95.8 96.0
    5.0 25 24 19 20 17 15 95.0 96.2 97.0
    下载: 导出CSV

    表  4  Ag@NaX复合材料的杀菌稳定性

    Table  4.   Stability of sterilization for Ag@NaX composite

    EntryNumber of usage
    12345678910*
    Number of bacterial colony/(CFU·(100 mL)−1) 0 0 0 0 0 0 0 25 1 360 0
    Endotoxin concentration/(4×10−10(g·100 mL)−1) 20 21 19 17 21 18 19 22 115 19
    Note: *—Calcination at 500℃ for 4 h.
    下载: 导出CSV

    表  5  Ag@NaX复合材料循环过程中水体中Ag+的浓度

    Table  5.   Ag+ concentration in water during recycling of Ag@NaX composite

    Number of usage
    12345678
    Ag+ concentration/(ug·L−1) 4.5 0.8 0.4 0.4 0.2 0 0 0
    下载: 导出CSV
  • [1] 李振, 刘素美, 贾兰, 等. 丝素蛋白包裹的银纳米粒子稳定性及抗菌性研究[J]. 化工新型材料, 2019, 47(5):264-268.

    LI Zhen, LIU Sumei, JIA Lan, et al. Stability and antibacterial activity of silk fibroin-capped silver nanoparticle[J]. New Chemical Materials,2019,47(5):264-268(in Chinese).
    [2] RAFAEL Diana, ANDRADE Fernanda, MARTINEZ-TRUCHARTE Francesc, et al. Sterilization procedure for temperature-sensitive hydrogels loaded with silver nanoparticles for clinical applications[J]. Nanomaterials,2019,9(3):380-393. doi: 10.3390/nano9030380
    [3] 曲锋, 许恒毅, 熊勇华, 等. 纳米银杀菌机理的研究进展[J]. 食品科学, 2010, 31(17):420-424.

    QU Feng, XU Hengyi, XIONG Yonghua, et al. Research progress in bactericidal mechanisms of nano-silver[J]. Food Science and Human Wellness,2010,31(17):420-424(in Chinese).
    [4] 张灿, 刘文君, 张明露. 饮用水细菌内毒素污染的风险识别与分析研究进展[J]. 环境化学, 2015, 34(3):425-430. doi: 10.7524/j.issn.0254-6108.2015.03.2014063005

    ZHANG Can, LIU Wenjun, ZHANG Minglu. Review on identification and analysis for health risk of bacterial endotoxin contamination in drinking water[J]. Environmental Chemistry,2015,34(3):425-430(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.03.2014063005
    [5] 李洪刚, 李巧玲, 万郁楠, 等. 纳米银负载TiO2纤维的制备及其杀菌性能[J]. 化工新型材料, 2014, 42(2):177-179+182.

    LI Honggang, LI Qiaoling, WAN Yu'nan, et al. Preparation and antibacterial properties of nanoAg-doped TiO2 fiber[J]. New Chemical Materials,2014,42(2):177-179+182(in Chinese).
    [6] LI Weijie, SUN Lanan, XIE Linjun, et al. Coordinatively unsaturated sites in zeolite matrix: Construction and catalysis[J]. Chinese Journal of Catalysis,2019,40(9):1255-1281. doi: 10.1016/S1872-2067(19)63381-4
    [7] MARK E D. Zeolites from a materials chemistry perspective[J]. Chemistry of Materials,2013,26(1):239-245.
    [8] CHARLES T K, WIESLAW J R. The discovery of mesoporous molecular sieves from the twenty year perspective[J]. Chemical Society Review,2013,42:3663-3670. doi: 10.1039/c3cs60016e
    [9] 刘悦, 陈哲. MCM-41介孔分子筛近期应用研究进展[J]. 广东化工, 2019, 46(24):66-68.

    LIU Yue, CHEN Zhe. Recent progress in the application of MCM-41 mesoporous molecular sieves[J]. Guangdong Chemical Industry,2019,46(24):66-68(in Chinese).
    [10] 杨丽丽, 李传国, 王宏, 等. HZSM-5分子筛负载SrTiO3光催化降解活性艳红X-3B[J]. 复合材料学报, 2016, 33(11):2682-2687.

    YANG Lili, LI Chuanguo, WANG Hong, et al. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecularsiev[J]. Acta Materiae Composite Sinica,2016,33(11):2682-2687(in Chinese).
    [11] MANUEL Moliner, CRISTINA Martínez, AVELINO Corma. Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis[J]. Chemistry of Materials,2014(26):246-258.
    [12] WU Pengfei, YANG Miao, ZHANG Wenna, et al. Silicoaluminophosphate molecular sieve DNL-6: Synthesis with a novel template, N, N'-dimethylethylenediamine, and its catalytic application[J]. Chinese Journal of Catalysis,2018,39(9):1511-1519. doi: 10.1016/S1872-2067(18)63122-5
    [13] 郜玉楠, 周历涛, 王静, 等. 壳聚糖/沸石分子筛复合吸附颗粒的制备与性能[J]. 复合材料学报, 2019, 36(3):701-707.

    GAO Yu'nan, ZHOU Litao, WANG Jing, et al. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Composite Sinica,2019,36(3):701-707(in Chinese).
    [14] WEI Haisheng, LIU Xiaoyan, WANG Aiqing, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications,2014,5(1):1-8.
    [15] LIN Jian, WANG Aiqing, QIAO Botao, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society,2013(135):15314-15317.
    [16] YANG Xiaofeng, WANG Aiqing, QIAO Botao, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research,2013,46(8):1740-1748. doi: 10.1021/ar300361m
    [17] LIN Jian, QIAO Botao, LIU Jingyue, et al. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide[J]. Angewandte Chemie International Edition,2012(51):2920-2924.
    [18] 徐德康, 王胜, 丁亚, 等. ZSM-5分子筛负载金属氧化物催化剂催化燃烧含丙烯腈废气的性能[J]. 工业催化, 2019, 27(5):39-44. doi: 10.3969/j.issn.1008-1143.2019.05.008

    XU Dekang, WANG Sheng, DING Ya, et al. Catalytic combustion of exhaust gas containing acrylonitrile over metal oxide catalysts supported by ZSM-5 zeolite[J]. Industrial Catalysis,2019,27(5):39-44(in Chinese). doi: 10.3969/j.issn.1008-1143.2019.05.008
    [19] 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76:757-773. doi: 10.6023/A18060250

    FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica,2018,76:757-773(in Chinese). doi: 10.6023/A18060250
    [20] ZHANG Zhiyang, LI Yanle, GU Jing, et al. The electrostatic field effect on catalytic properties of platinum clusters confined in zeolite for hydrogenation[J]. Catalysis Science & Technology,2018(8):6384-6395.
    [21] ZHANG Zhiyang, DING Liping, GU Jing, et al. 3D charged grid induces a high performance catalyst: Ruthenium clusters enclosed in X-zeolite for hydrogenation of phenol to cyclohexanone[J]. Catalysis Science & Technology,2017,7:5953-5963.
    [22] GU Jing, ZHANG Zhiyang, HU Pei, et al. Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst[J]. ACS Catalysis,2015(5):6893-6901.
    [23] GU Jing, ZHANG Zhiyang, DING Liping, et al. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol[J]. Catalysis Communications,2017(97):98-101.
    [24] ZHAN Bizeng, WHITE Mary Anne, LUMSDEN Michael, et al. Control of particle size and surface properties of crystals of NaX zeolite[J]. Chemistry of Materials,2002,14(9):3636-3642. doi: 10.1021/cm011635f
    [25] 王会发, 傅碧峰, 刘国丹, 等. 光等离子空气杀菌装置对大肠杆菌杀灭效果的试验研究[J]. 青岛理工大学学报, 2017, 38(3):95-99. doi: 10.3969/j.issn.1673-4602.2017.03.017

    WANG Huifa, FU Bifeng, LIU Guodan, et al. Experimental study on the bactericidal effect of escherichia coli of optical plasma air sterilization device[J]. Journal of Qingdao University of Technology,2017,38(3):95-99(in Chinese). doi: 10.3969/j.issn.1673-4602.2017.03.017
    [26] JIANG Weidong, XU Bin, FAN Guangyin, et al. UV light-assisted synthesis of highly efficient Pd-based catalyst over NiO for hydrogenation of o-chloronitrobenzene[J]. Nanomaterials,2018,8(4):1-16.
    [27] 魏振洲, 杜送田, 石超, 等. 钙离子对细菌内毒素含量测定的影响[J]. 微生物学免疫学进展, 2019, 47(6):42-46.

    WEI Zhenzhou, DU Songtian, SHI Chao, et al. Effect of calcium ion in determination of bacterial endotoxin[J]. Progress in Microbiology and Immunology,2019,47(6):42-46(in Chinese).
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  787
  • HTML全文浏览量:  325
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-08
  • 录用日期:  2020-02-25
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回