留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展

潘利文 饶德旺 杨超 杨倚旺 王瑾 胡治流

潘利文, 饶德旺, 杨超, 等. 空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展[J]. 复合材料学报, 2020, 37(6): 1370-1382. doi: 10.13801/j.cnki.fhclxb.20200302.001
引用本文: 潘利文, 饶德旺, 杨超, 等. 空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展[J]. 复合材料学报, 2020, 37(6): 1370-1382. doi: 10.13801/j.cnki.fhclxb.20200302.001
PAN Liwen, RAO Dewang, YANG Chao, et al. Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1370-1382. doi: 10.13801/j.cnki.fhclxb.20200302.001
Citation: PAN Liwen, RAO Dewang, YANG Chao, et al. Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1370-1382. doi: 10.13801/j.cnki.fhclxb.20200302.001

空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20200302.001
基金项目: 广西有色金属及特色材料加工重点实验室青年基金(GXYSYF1806);广西自然科学基金(2016GXNSFAA380223);广西大学“大学生创新创业训练计划”(201810593230);广西大学科研基金(XJZ100343)
详细信息
    通讯作者:

    潘利文,博士,副研究员,硕士生导师,研究方向为金属基复合泡沫材料 E-mail:plw988@163.com

  • 中图分类号: TB331

Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams

  • 摘要: 金属基复合泡沫是由空心微珠和金属基体复合而成的一种新型结构功能多孔复合材料。它具有许多优异的性能,如轻质、高比强度、高比刚度、高吸能能力、隔热、吸声隔音及电磁屏蔽等,高吸能能力是金属基复合泡沫的突出特点,在防撞、减振、缓冲及防爆抗振的汽车、航空航天、军事装备及船舶等领域具有广阔的应用前景。本文对金属基复合泡沫的基体材料、空心微珠填充材料、影响金属基复合泡沫压缩吸能性能的因素及压缩吸能机制进行了概述,重点报道了金属基复合泡沫常用的制备工艺及近年来铝基、镁基、锌基及钢基复合泡沫吸能性能的研究进展,分析了当前研究中存在的一些问题,并对金属基复合泡沫的应用现状作了阐述,最后展望了金属基复合泡沫的研究发展趋势。

     

  • 图  1  空心微珠颗粒示意图[38]

    Figure  1.  Schematic diagram of hollow particles[38]

    图  2  金属基复合泡沫中一些常用的空心微珠

    Figure  2.  Some commonly used hollow particles in metal matrix syntactic foams

    图  3  多孔泡沫材料在工程应用中的性能范围[39]

    Figure  3.  Range of properties of porous foams in engineering applications[39]

    图  4  不同材料的压缩应力-应变曲线

    Figure  4.  Compressive stress-strain curves of different materials

    图  5  金属基复合泡沫压缩变形示意图[45]

    Figure  5.  Schematic diagram of compression deformation of metal matrix syntactic foam[45]

    图  6  不同基体和不同壁厚与半径比t的/R玻璃空心微珠/Al复合泡沫的微观结构[29]: (a)cp-Al,0.043;(b)cp-Al,0.052;(c)cp-Al,0.064;(d)5A03,0.043;(e)5A03,0.052;(f)5A03,0.064;(g)5A06,0.043;(h)5A06,0.052;(i)5A06,0.064

    Figure  6.  Microstructure of glass hollow particles /Al syntactic foams with different substrates and wall thickness to radius ratios t/R[29]: (a) cp-Al, 0.043; (b) cp-Al, 0.052; (c) cp-Al, 0.064; (d) 5A03, 0.043; (e) 5A03, 0.052; (f) 5A03, 0.064; (g) 5A06, 0.043; (h) 5A06, 0.052; (i) 5A06, 0.064

    图  7  不同组成的空心微珠/Al复合泡沫的显微照片[47]

    Figure  7.  Micrographs of different hollow particle/Al syntactic foams[47]

    图  8  不同直径的空心微珠/镁复合泡沫微观结构[41]

    Figure  8.  Microstructures of hollow particle/Mg syntactic foams with different diameters((a) 0.106-0.212 mm; (b) 0.212-0.425 mm; (c) 0.425-0.500 mm)[41]

    表  1  一些铝基复合泡沫的准静态压缩吸能性能

    Table  1.   Quasi-static compressive energy absorption properties of some Al matrix syntactic foams

    Preparation methodMatrix Al-alloyHollow microsphereEnergy absorption capacity/(MJ·m−3)Specific energy absorption/(kJ·kg−1)Ref.Year
    Stirring castingZL111Al2O347.3123.08[42]2019
    Stirring castingAA2014Fly ash6532.66[49]2019
    Pressure infiltration5A03Glass51.242.0[28]2018
    Pressure infiltrationA356Expanded perlite6.68.68[9]2017
    Pressure infiltrationPure AlGlass35.729.8[29]2017
    Pressure infiltration5A03Glass60.849.4[29]2017
    Pressure infiltration5A06Glass62.844.9[29]2017
    Stirring castingAA2014Ceramics23.511.15[51]2017
    Vacuum CastingAl-12SiGlass76.2[52]2017
    Squeeze castingPure AlFly ash15.427[53]2016
    Pressure infiltrationA356Expanded perlite55.1923.78[54]2016
    Pressure infiltrationA356Pumice26.524.8[2]2015
    Powder metallurgyPure AlCeramics34.8814.8[47]2015
    Pressure infiltrationA380Al2O357.731[55]2014
    Gravity infiltrationA355.0Expansive clay1815[56]2014
    Pressure infiltrationA206SiC63.232.75[32]2013
    Pressure infiltration6082Ceramics30.925[57]2009
    Squeeze castingPure AlGlass20-3514~23[58]2007
    下载: 导出CSV

    表  2  一些镁基复合泡沫的准静态压缩吸能性能

    Table  2.   Quasi-static compressive energy absorption properties of some Mg matrix syntactic foams

    Preparation methodMatrix Mg-alloyHollow microsphereEnergy absorption capacity/(MJ·m−3)Specific energy absorption/(kJ·kg−1)Ref.Year
    Stirring castingAZ91DGlass32.1422.96[23]2017
    Pressure infiltrationAZ91DAl2O312453.68[41]2015
    Pressure infiltrationAZ91SiC45.937.62[32]2013
    Stirring castingZC63Fly ash30.117.92[24]2007
    下载: 导出CSV

    表  3  一些锌基复合泡沫的准静态压缩吸能性能

    Table  3.   Quasi-static compressive energy absorption properties of some Zn matrix syntactic foams

    Preparation methodMatrix Zn-alloyHollow microsphereEnergy absorption capacity/(MJ·m−3)Specific energy absorption/(kJ·kg−1)Ref.Year
    Pressure infiltrationZA8Glass(Ni coated)125.341.8[3]2018
    Gravity infiltrationZA27Expanded perlite30-3514.85-16.83[27]2018
    Stirring castingZA27Expanded perlite6[34]2014
    Stirring castingZA27SiC4.33[46]2014
    Stirring castingZn12AlFly ash76.7[43]2009
    Stirring castingZn-22AlSiC<2.5<0.9[59]2009
    Stirring castingZnAl22Fly ash65.519.85[44]2008
    下载: 导出CSV
  • [1] ROHATGI P K, GUPTA N, SCHULTZ B F, et al. The synthesis, compressive properties, and applications of metal matrix syntactic foams[J]. JOM,2011,63(2):36-42. doi: 10.1007/s11837-011-0026-1
    [2] TAHERISHARGH M, BELOVA I V, MURCH G E, et al. Pumice/aluminum syntactic foam[J]. Materials Science and Engineering: A,2015,635:102-108. doi: 10.1016/j.msea.2015.03.061
    [3] PAN L W, YANG Y, AHSAN M U, et al. Zn-matrix syntactic foams: Effect of heat treatment on microstructure and compressive properties[J]. Materials Science and Engineering: A,2018,731:413-422. doi: 10.1016/j.msea.2018.06.072
    [4] GARCIA-AVILA M, PORTANOVA M, RABIEI A. Ballistic performance of a composite metal foam-ceramic armor system[J]. Procedia Materials Science,2014,4:151-156. doi: 10.1016/j.mspro.2014.07.571
    [5] GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam[J]. International Journal of Impact Engineering,2015,77:134-146. doi: 10.1016/j.ijimpeng.2014.11.017
    [6] MONDAL D P, GOEL M D, UPADHYAY V, et al. Comparative study on microstructural characteristics and compression deformation behavior of alumina and cenosphere reinforced aluminum syntactic foam made through stir casting technique[J]. Transactions of the Indian Institute of Metals,2018,71(3):567-577. doi: 10.1007/s12666-017-1211-x
    [7] KUMAR V R, RAO C R P, POORNACHANDRA, et al. Corrosion and wear studies on LM6 grade aluminum-cenosphere composite – An experimental approach[J]. Materials Today: Proceedings,2018,5(5):11667-11677. doi: 10.1016/j.matpr.2018.02.136
    [8] KATONA B, SZÉBENYI G, ORBULOV I N. Fatigue properties of ceramic hollow sphere filled aluminum matrix syntactic foams[J]. Materials Science and Engineering: A,2017,679:350-357. doi: 10.1016/j.msea.2016.10.061
    [9] BROXTERMANN S, TAHERISHARGH M, BELOVA I V, et al. On the compressive behavior of high porosity expanded perlite-metal syntactic foam (P-MSF)[J]. Journal of Alloys and Compounds,2017,691:690-697. doi: 10.1016/j.jallcom.2016.08.284
    [10] KATONA B, SZLANCSIK A, TABI T, et al. Compressive characteristics and low frequency damping of aluminum matrix syntactic foams[J]. Materials Science and Engineering: A,2019,739:140-148. doi: 10.1016/j.msea.2018.10.014
    [11] LAMANNA E, GUPTA N, CAPPA P, et al. Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich[J]. Journal of Alloys and Compounds,2017,695:2987-2994. doi: 10.1016/j.jallcom.2016.11.361
    [12] MÁJLINGER K, BOZÓKI B, KALÁCSKA G, et al. Tribological properties of hybrid aluminum matrix syntactic foams[J]. Tribology International,2016,99:211-223. doi: 10.1016/j.triboint.2016.03.032
    [13] SANTA M J, SCHULTZ B, FERGUSON J, et al. Al–Al2O3 syntactic foams–Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams[J]. Materials Science and Engineering: A,2013,582:415-422. doi: 10.1016/j.msea.2013.05.081
    [14] YU Q, ZHAO Y, DONG A, et al. Preparation and properties of C/C hollow spheres and the energy absorption capacity of the corresponding aluminum syntactic foams[J]. Materials,2018,11(6):997-1010. doi: 10.3390/ma11060997
    [15] LUONG D D, SHUNMUGASAMY V C, GUPTA N, et al. Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams[J]. Materials & Design,2015,66:516-531.
    [16] PERONI L, SCAPIN M, FICHERA C, et al. Investigation of the mechanical behavior of AISI 316L stainless steel syntactic foams at different strain-rates[J]. Composites Part B: Engineering,2014,66:430-442. doi: 10.1016/j.compositesb.2014.06.001
    [17] CASTRO G, NUTT S R. Synthesis of syntactic steel foam using gravity-fed infiltration[J]. Materials Science and Engineering: A,2012,553:89-95. doi: 10.1016/j.msea.2012.05.097
    [18] MÁJLINGER K, ORBULOV I N. Characteristic compressive properties of hybrid metal matrix syntactic foams[J]. Materials Science and Engineering: A,2014,606:248-256. doi: 10.1016/j.msea.2014.03.100
    [19] BRASZCZYŃSKA-MALIK K N, KAMIENIAK J. AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique[J]. Materials Characterization,2017,128:209-216. doi: 10.1016/j.matchar.2017.04.005
    [20] ANANTHARAMAN H, SHUNMUGASAMY V C, STRBIK O M, et al. Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams[J]. International Journal of Impact Engineering,2015,82:14-24. doi: 10.1016/j.ijimpeng.2015.04.008
    [21] YILONG L, GUIBAO Q, YANG Y, et al. Preparation and compressive properties of magnesium foam[J]. Rare Metal Materials and Engineering,2016,45(10):2498-2502. doi: 10.1016/S1875-5372(17)30022-X
    [22] BRASZCZYŃSKA-MALIK K N, KAMIENIAK J. Analysis of interface between components in AZ91 magnesium alloy foam composite with Ni-P coated fly ash cenospheres[J]. Journal of Alloys and Compounds,2017,720:352-359. doi: 10.1016/j.jallcom.2017.05.285
    [23] ANBUCHEZHIYAN G, MOHAN B, SATHIANARAYANAN D, et al. Synthesis and characterization of hollow glass microspheres reinforced magnesium alloy matrix syntactic foam[J]. Journal of Alloys and Compounds,2017,719:125-132. doi: 10.1016/j.jallcom.2017.05.153
    [24] DAOUD A, ABOU EL-KHAIR M T, ABDEL-AZIZ M, et al. Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites[J]. Composites Science and Technology,2007,67(9):1842-1853. doi: 10.1016/j.compscitech.2006.10.023
    [25] MANAKARI V, PARANDE G, GUPTA M. Effects of hollow fly-ash particles on the properties of magnesium matrix syntactic foams: A Review[J]. Materials Performance and Characterization,2016,5(1):116-131.
    [26] XIA X, FENG J, DING J, et al. Fabrication and characterization of closed-cell magnesium-based composite foams[J]. Materials & Design,2015,74:36-43.
    [27] BROXTERMANN S, VESENJAK M, KRSTULOVIĆ-OPARA L, et al. Quasi static and dynamic compression of zinc syntactic foams[J]. Journal of Alloys and Compounds,2018,768:962-969. doi: 10.1016/j.jallcom.2018.07.215
    [28] ZHANG Q, LIN Y F, CHI H, et al. Quasi-static and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure[J]. Composite Structures,2018,183:499-509. doi: 10.1016/j.compstruct.2017.05.024
    [29] LIN Y F, ZHANG Q, ZHANG F, et al. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression[J]. Materials Science and Engineering: A,2017,696:236-247. doi: 10.1016/j.msea.2017.04.060
    [30] OMAR M Y, XIANG C, GUPTA N, et al. Syntactic foam core metal matrix sandwich composite under bending conditions[J]. Materials & Design,2015,86:536-544.
    [31] LIN H, WANG H Y, LU C, et al. A metallic glass syntactic foam with enhanced energy absorption performance[J]. Scripta Materialia,2016,119:47-50. doi: 10.1016/j.scriptamat.2016.03.034
    [32] ROCHA RIVERO G A, SCHULTZ B F, FERGUSON J B, et al. Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams[J]. Journal of Materials Research,2013,28(17):2426-2435. doi: 10.1557/jmr.2013.176
    [33] COX J, LUONG D D, SHUNMUGASAMY V C, et al. Dynamic and thermal properties of aluminum alloy A356/silicon carbide hollow particle syntactic foams[J]. Metals,2014,4(4):530-548. doi: 10.3390/met4040530
    [34] MONDAL D P, GOEL M D, BAGDE N, et al. Closed cell ZA27–SiC foam made through stir-casting technique[J]. Materials & Design,2014,57:315-324.
    [35] SAHU S, MONDAL D P, CHO J U, et al. Low-velocity impact characteristics of closed cell AA2014-SiCp composite foam[J]. Composites Part B: Engineering,2019,160:394-401. doi: 10.1016/j.compositesb.2018.12.054
    [36] AL-SAHLANI K, BROXTERMANN S, LELL D, et al. Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams[J]. Materials Science and Engineering: A,2018,728:80-87. doi: 10.1016/j.msea.2018.04.103
    [37] TAHERISHARGH M, LINUL E, BROXTERMANN S, et al. The mechanical properties of expanded perlite-aluminum syntactic foam at elevated temperatures[J]. Journal of Alloys and Compounds,2018,737:590-596. doi: 10.1016/j.jallcom.2017.12.083
    [38] GUPTA N, ROHATGI P K. 4. 15 metal matrix syntactic foams[J]. Comprehensive Composite Materials II,2018,4:364-385.
    [39] GIBSON L, ASHBY M F. Cellular solids: Structure and properties [M]. UK: Cambridge University Press, 1999: 1-50.
    [40] 林颖菲. 玻璃空心微珠/Al多孔复合材料微观组织与压缩特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIN Yingfei. Research on microstructure and compression characteristics of glass cenospheres/Al foam composites [D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [41] NEWSOME B D, SCHULTZ F B, FERGUSON B J, et al. Synthesis and quasi-static compressive properties of Mg-AZ91D-Al2O3 syntactic foams[J]. Materials,2015,8(9):6085-6095. doi: 10.3390/ma8095292
    [42] SU M, WANG H, HAO H. Compressive properties of aluminum matrix syntactic foams prepared by stir casting method[J]. Advanced Engineering Materials,2019,21(8):1900183. doi: 10.1002/adem.201900183
    [43] DAOUD A. Effect of strain rate on compressive properties of novel Zn12Al based composite foams containing hybrid pores[J]. Materials Science and Engineering: A,2009,525(1):7-17.
    [44] DAOUD A. Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting[J]. Materials Science and Engineering: A,2008,488(1):281-295.
    [45] 丁佰锁. 复合泡沫金属材料缓冲吸能性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.

    DING Baisuo. Energy absorption property of composite metallic foams [D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
    [46] SAHU S, GOEL M D, MONDAL D P, et al. High temperature compressive deformation behavior of ZA27–SiC foam[J]. Materials Science and Engineering: A,2014,607:162-172. doi: 10.1016/j.msea.2014.04.004
    [47] VOGIATZIS C A, TSOUKNIDAS A, KOUNTOURAS D T, et al. Aluminum–ceramic cenospheres syntactic foams produced by powder metallurgy route[J]. Materials & Design,2015,85:444-454.
    [48] MO W, ZHANG L, WU G, et al. Effects of processing parameters on microstructure and mechanical properties of squeeze-cast Mg–12Zn–4Al–0.5Ca alloy[J]. Materials & Design,2014,63:729-737.
    [49] SAHU S, ANSARI M Z, MONDAL D P, et al. Quasi-static compressive behavior of aluminum cenosphere syntactic foams[J]. Materials Science and Technology,2019,35(7):856-864. doi: 10.1080/02670836.2019.1593670
    [50] MYERS K, CORTES P, CONNER B, et al. Structure property relationship of metal matrix syntactic foams manufactured by a binder jet printing process[J]. Additive Manufacturing,2015,5:54-59. doi: 10.1016/j.addma.2014.12.003
    [51] BIRLA S, MONDAL D P, DAS S, et al. Compressive deformation behavior of highly porous AA2014-cenosphere closed cell hybrid foam prepared using CaH2 as foaming agent: Comparison with aluminum foam and syntactic foam[J]. Transactions of the Indian Institute of Metals,2017,70(7):1827-1840. doi: 10.1007/s12666-016-0984-7
    [52] WRIGHT A, KENNEDY A. The processing and properties of syntactic Al foams containing low cost expanded glass particles[J]. Advanced Engineering Materials,2017,19(11):1600467. doi: 10.1002/adem.201600467
    [53] ZHANG B, LIN Y, LI S, et al. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams[J]. Composites Part B: Engineering,2016,98:288-296. doi: 10.1016/j.compositesb.2016.05.034
    [54] TAHERISHARGH M, VESENJAK M, BELOVA I V, et al. In situ manufacturing and mechanical properties of syntactic foam filled tubes[J]. Materials & Design,2016,99:356-368.
    [55] SANTA-MARIA J A, SCHULTZ B F, FERGUSON J B, et al. Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams[J]. Journal of Materials Science,2014,49(3):1267-1278. doi: 10.1007/s10853-013-7810-y
    [56] BAZZAZ B S, KAHANI K J, KAHANI R, et al. Fabrication of metallic composite foam using ceramic porous spheres “Light Expanded Clay Aggregate” via casting process[J]. Materials & Design,2014,64:310-315.
    [57] TAO X F, ZHANG L P, ZHAO Y Y. Al matrix syntactic foam fabricated with bimodal ceramic microspheres[J]. Materials & Design,2009,30(7):2732-2736.
    [58] WU G H, DOU Z Y, SUN D L, et al. Compression behaviors of cenosphere–pure aluminum syntactic foams[J]. Scripta Materialia,2007,56(3):221-224. doi: 10.1016/j.scriptamat.2006.10.008
    [59] LIU J, YU S, ZHU X, et al. Correlation between ceramic additions and compressive properties of Zn–22Al matrix composite foams[J]. Journal of Alloys and Compounds,2009,476(1):220-225.
    [60] LUONG D, LEHMHUS D, GUPTA N, et al. Structure and compressive properties of Invar-cenosphere syntactic foams[J]. Materials,2016,9(2):115. doi: 10.3390/ma9020115
    [61] GUO C, ZOU T, SHI C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers[J]. Materials Science and Engineering: A,2015,645:1-7. doi: 10.1016/j.msea.2015.07.091
    [62] MU Y, YAO G, CAO Z, et al. Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam[J]. Scripta Materialia,2011,64(1):61-64. doi: 10.1016/j.scriptamat.2010.09.005
    [63] YANG K, YANG X, LIU E, et al. High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Science and Engineering: A,2018,729:487-495. doi: 10.1016/j.msea.2017.09.011
    [64] AKINWEKOMI A D, LAW W C, CHOY M T, et al. Processing and characterization of carbon nanotube-reinforced magnesium alloy composite foams by rapid microwave sintering[J]. Materials Science and Engineering: A,2018,726:82-92. doi: 10.1016/j.msea.2018.04.069
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1942
  • HTML全文浏览量:  207
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-02-07
  • 网络出版日期:  2020-03-03
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回