留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响

张哲轩 周再峰 山泉 李祖来 张飞

张哲轩, 周再峰, 山泉, 等. 蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响[J]. 复合材料学报, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001
引用本文: 张哲轩, 周再峰, 山泉, 等. 蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响[J]. 复合材料学报, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001
ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001
Citation: ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001

蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响

doi: 10.13801/j.cnki.fhclxb.20200226.001
基金项目: 国家自然科学基金 (5187011014)
详细信息
    通讯作者:

    山泉,博士,副教授,硕士生导师,研究方向为金属基复合材料、金属材料 E-mail:276125020@qq.com

  • 中图分类号: TB331

Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites

  • 摘要: 为探究蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响,采用真空消失模铸渗(V-EPC)工艺制备不同孔径下的复合材料。检测W质量分数分布,发现预制体孔径较小或较大时W质量分数分布不均匀;而预制体孔径适中时W质量分数分布较均匀,其原孔壁与原孔心处W质量分数与硬度相差最小,复合层耐磨性最高。基于扩散动力学进行模拟,表明W扩散均匀性同时受扩散距离与扩散时间的影响。预制体孔径较小时,扩散距离虽短,但其孔内熔体凝固较快,扩散时间较短,不利于W扩散;预制体孔径较大时,其孔内熔体凝固虽慢,扩散时间较长,但扩散距离增长,仍不利于W扩散;预制体孔径适中时,因兼顾扩散距离与扩散时间,利于W扩散。W扩散均匀性较差时,预制体原孔心处W质量分数较小,硬度也较低,一定范围内降低复合层耐磨性。

     

  • 图  1  WC/Fe复合材料的制备过程

    Figure  1.  Preparation process of WC/Fe composites ((a)V-EPC (Vacuum-expendable pattern casting); (b)Honeycomb preform; (c)Transformation between preform and layer)

    图  3  不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布

    Figure  3.  Average grain size distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform

    图  2  不同预制体孔径下WC/Fe复合材料复合层的显微组织

    Figure  2.  Microstructure of layer in WC/Fe composites with different hole diameters of preform

    图  4  不同预制体孔径下WC/Fe复合材料复合层的物相组成

    Figure  4.  Phase composition of layer in WC/Fe composites with different hole diameters of preform

    图  5  不同预制体孔径下WC/Fe复合材料复合层的元素分布

    Figure  5.  Element distribution of layer in WC/Fe composites with different hole diameters of preform

    图  6  不同预制体孔径下WC/Fe复合材料复合层原孔内的W质量分数分布

    Figure  6.  W mass fraction distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform

    图  7  不同预制体孔径下WC/Fe复合材料复合层原孔内的硬度分布

    Figure  7.  Hardness distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform

    图  8  不同预制体孔径下WC/Fe复合材料复合层原孔心处的磨损形貌

    Figure  8.  Wear morphologies at initial hole center of layer in WC/Fe composites with different hole diameters of preform

    图  9  不同预制体孔径下WC/Fe复合材料复合层的磨损量

    Figure  9.  Wear amount of layer in WC/Fe composites with different hole diameters of preform

    图  10  不同预制体孔径下孔内熔体凝固时热物理场的有限元模拟

    Figure  10.  Finite element simulation of thermal physical field when internal matrix solidifies with different hole diameters of preform

    图  11  不同预制体孔径下WC/Fe复合材料复合层原孔内W质量分数分布的数值模拟

    Figure  11.  Numerical simulation of W mass fraction distribution in initial hole in WC/Fe composites with different hole diameters of preform

    表  1  WC/Fe复合材料中预制体的成分

    Table  1.   Composition of preform in WC/Fe composites

    CompositionMass fraction/wt%Size/μm
    WC 40 150-200
    Ni60 30 60-90
    FeCr55C6.0 30 150-200
    下载: 导出CSV

    表  2  WC/Fe复合材料中预制体的结构参数

    Table  2.   Structure parameters of preform in WC/Fe composites

    Diameter R/mmDistance d/mmNumber n
    3 6 63
    6 12 16
    9 18 7
    下载: 导出CSV

    表  3  WC/Fe复合材料中基体的成分

    Table  3.   Composition of matrix in WC/Fe composites

    CompositionCCrMnSiFe
    Mass fraction/wt% 1.2-1.3 18.0-20.0 0.4-0.6 1.0-1.2 Balance
    下载: 导出CSV

    表  4  预制体孔内熔体凝固时热物理场模拟的参数设置

    Table  4.   Parameters setting of thermal physical field simulation when internal matrix of preform solidifies

    PhaseDensity/(kg·m−3)Thermal conductivity/(W·m−1·K−1)Heat capacity/(J·kg−1·K−1)
    Fe(s) 8 500 200 400
    Fe(l) 7 800 450 550
    Inlet temperature/°C Melting temperature/°C Temperature transition half width/K Surface emissivity
    1 500 1 100 50 0.8
    Specific heat/(J·kg−1·K−1) Solidification latent heat/(kJ·kg−1) Heat transfer coefficient/(W·m−2·K−1)
    60 200 800
    下载: 导出CSV
  • [1] 李祖来, 蒋业华, 周荣, 等. 碳化钨颗粒增强钢基表层复合材料的热物理特性[J]. 材料研究学报, 2014, 28(8):621-626. doi: 10.11901/1005.3093.2013.913

    LI Zulai, JIANG Yehua, ZHOU rong, et al. Thermo-physical characteristics of WC particle-reinforced steel substrate surface composites[J]. Chinese Journal of Materials Research,2014,28(8):621-626(in Chinese). doi: 10.11901/1005.3093.2013.913
    [2] 张玉波, 郭荣鑫, 夏海廷, 等. WCP含量对粉末冶金Cu/WCP复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1):85-92. doi: 10.11868/j.issn.1001-4381.2015.001530

    ZHANG Yubo, GUO Rongxin, XIA Haiting, et al. Effect of WCP content on fatigue crack growth behavior of powder metallurgy Cu/WCP composites[J]. Journal of Materials Engineering,2017,45(1):85-92(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001530
    [3] 山泉, 张亚峰, 张哲轩, 等. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2):115-121. doi: 10.11868/j.issn.1001-4381.2017.001445

    SHAN Quan, ZHANG Yafeng, ZHANG Zhexuan, et al. Effect of W content on compression and thermal fatigue behavior of WCP/steel matrix composites[J]. Journal of Materials Engineering,2019,47(2):115-121(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.001445
    [4] 陈奉锐, 山泉, 李祖来, 等. 重熔温度对WCP/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113.

    CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
    [5] LIU A, GUO M, HU H L. Distribution and dissolution of WC particles in surface metal matrix composites produced by plasma melt injection[J]. Surface Engineering,2010,26(8):623-628. doi: 10.1179/174329409X389317
    [6] 吴迎飞, 陈华辉, 李海存, 等. 铁基复合材料中碳化W元素颗粒的溶解析出行为[J]. 材料工程, 2018, 8(8):98-105. doi: 10.11868/j.issn.1001-4381.2016.000313

    WU Yingfei, CHEN Huahui, LI Haicun, et al. Dissolution and precipitation behavior of WC particles in iron matrix composites[J]. Journal of Materials Engineering,2018,8(8):98-105(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000313
    [7] 隋育栋, 蒋业华, 李祖来, 等. WC溶解对WCp/钢基表层复合材料组织和性能的影响[J]. 材料热处理学报, 2012, 33(Z1):7-10.

    SUI Yudong, JIANG Yehua, LI Zulai, et al. Effects of WC dissolute in matrix on microstructure and properties of WC reinforced steel composite[J]. Transactions of Materials and Heat Treatment,2012,33(Z1):7-10(in Chinese).
    [8] ANDREIKIV O E, SHTAYURA N S. Computational models of fatigue cracks growth in metallic materials under the action of force and physicochemical factors[J]. Materials Science,2019,54(4):465-476. doi: 10.1007/s11003-019-00206-1
    [9] HUANG C Q, NUNG K Y. Singular perturbation and bifurcation of diffuse transition layer in inhomogeneous media, part II[J]. Networks and Heterogeneous Media,2015,10(4):897-948. doi: 10.3934/nhm.2015.10.897
    [10] ZHOU Mojin, SUI Yudong, CHONG Xiaoyu, et al. Wear resistance mechanism of ZTAP/HCCI composites with a honeycomb structure[J]. Metals,2018,8:588. doi: 10.3390/met8080588
    [11] 周谟金, 蒋业华, 卢德宏, 等. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(12):4324-4328.

    ZHOU Mojin, JIANG Yehua, LU Dehong, et al. Preparation and properties of the ZTA particles cover with B4C powder reinforced iron matrix composites[J]. Materials Reports,2018,32(12):4324-4328(in Chinese).
    [12] WU Xiaorong, YU Hongjun, GUO Licheng, et al. Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure[J]. Composite Structures,2019,213:165-172. doi: 10.1016/j.compstruct.2019.01.081
    [13] SONG Ping, LIANG Chaobo, WANG Lei, et al. Obviously improved electromagnetic interference shielding preformances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology,2019,181:107698. doi: 10.1016/j.compscitech.2019.107698
    [14] XU Daqing, LUO Jirong, HUANG Naiyu. Structures and properties of iron matrix composites with W carbide particle by EPC-V process[J]. Journal of Iron and Steel Research International,1999,6(2):29-32.
    [15] SHI Tao, GUO Leichen, HAO Junjie, et al. Microstructure and wear resistance of in-situ TiC surface composites coating on copper matrix synthesized by SHS and vacuum-expendable pattern casting[J]. Surface & Coatings Technology,2017,324:288-297.
    [16] 李永坤, 李璐, 周荣锋, 等. ZCuSn10合金半固态流变挤压件显微组织的演变[J]. 材料导报, 2017, 31(16):60-64. doi: 10.11896/j.issn.1005-023X.2017.016.013

    LI Yongkun, LI Lu, ZHOU Rongfeng, et al. Microstructure evolution of semi-solid ZCuSn10 alloy prepared by rheological squeeze casting[J]. Materials Reports,2017,31(16):60-64(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.016.013
    [17] LI Yongkun, ZHOU Rongfeng, LI Lu, et al. Microstructures formation, distribution of tin element and properties of CuSn10P1 alloy during controlled by melt cooling[J]. Materials Research Express,2018,5(6):066517. doi: 10.1088/2053-1591/aac931
    [18] JACKSON R S. The austenite liquidus surface and constitutional diagram for the Fe-Cr-C metastable system[J]. Journal of the Iron and Steel Institute,1970,208(2):163.
    [19] TABRETT C P, SARE I R, GHOMASHCHI M R. Microstructure-property relationships in high chromium white iron alloys[J]. International Materials Reviews,1996,41(2):59-82. doi: 10.1179/imr.1996.41.2.59
    [20] 禹润缜, 刘胜新, 王朋旭, 等. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21):3780-3788. doi: 10.11896/j.issn.1005-023X.2018.21.015

    YU Runzhen, LIU Shengxin, WANG Pengxu, et al. A brief survey on the Fe-Cr-C hard facing alloys and its hard phases[J]. Materials Reports,2018,32(21):3780-3788(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.21.015
    [21] 张建勋, 裴怡, 米运卿. 液相扩散焊等温凝固阶段的特征及解析解[J]. 焊管, 2004, 27(6):25-31. doi: 10.3969/j.issn.1001-3938.2004.06.006

    ZHANG Jianxun, PEI Yi, MI Yunqing. Characteristics of isothermal solidification stage and analytical solutions for the stage in transient liquid phase bonding process[J]. Welded Pipe and Tube,2004,27(6):25-31(in Chinese). doi: 10.3969/j.issn.1001-3938.2004.06.006
    [22] 刘安娜, 翟秋亚, 徐锦锋, 等. DD6单晶TLP焊保温时间及硼元素扩散距离的理论预测[J]. 热加工工艺, 2014, 43(19):190-193, 197.

    LIU Anna, ZHAI Qiuya, XU Jinfeng, et al. Prediction of temperature holding time and B element diffusion distance of TLP bonding for DD6 superalloy[J]. Hot Working Technology,2014,43(19):190-193, 197(in Chinese).
    [23] 张哲轩, 周再峰, 山泉, 等. 表面W元素合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(Z1):362-365.

    ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Effect of surface W alloying on microstructure and hardness of high chromium cast iron[J]. Materials Reports,2019,33(Z1):362-365(in Chinese).
    [24] ZHOU Zaifeng, SHAN Quan, JIANG Yehua, et al. Effect of nanoscale V2C precipitates on the three-body abrasive wear behavior of high-Mn austenitic steel[J]. Wear,2019,436-437:203009. doi: 10.1016/j.wear.2019.203009
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  243
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 录用日期:  2020-01-05
  • 网络出版日期:  2020-02-26
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回