留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同导电相对混凝土裂缝智能化自监测的灵敏度与噪声水平的影响

柳根金 丁一宁 衡震

柳根金, 丁一宁, 衡震. 不同导电相对混凝土裂缝智能化自监测的灵敏度与噪声水平的影响[J]. 复合材料学报, 2020, 37(10): 2610-2618. doi: 10.13801/j.cnki.fhclxb.20200225.001
引用本文: 柳根金, 丁一宁, 衡震. 不同导电相对混凝土裂缝智能化自监测的灵敏度与噪声水平的影响[J]. 复合材料学报, 2020, 37(10): 2610-2618. doi: 10.13801/j.cnki.fhclxb.20200225.001
LIU Genjin, DING Yining, HENG Zhen. Influence of conductive materials on the crack sensing sensitivity and noise signal of smart concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2610-2618. doi: 10.13801/j.cnki.fhclxb.20200225.001
Citation: LIU Genjin, DING Yining, HENG Zhen. Influence of conductive materials on the crack sensing sensitivity and noise signal of smart concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2610-2618. doi: 10.13801/j.cnki.fhclxb.20200225.001

不同导电相对混凝土裂缝智能化自监测的灵敏度与噪声水平的影响

doi: 10.13801/j.cnki.fhclxb.20200225.001
基金项目: 国家自然科学基金 (51578109)
详细信息
    通讯作者:

    丁一宁,博士,教授,博士生导师,研究方向为高性能混凝土 E-mail:ynding@hotmail.com

  • 中图分类号: TU528

Influence of conductive materials on the crack sensing sensitivity and noise signal of smart concrete

  • 摘要: 采用四电极法测量了弯曲荷载作用下智能混凝土梁受拉侧裂缝扩展过程的电阻变化率(ρFCR),对比了碳黑(CB)、钢纤维(SF)、碳纤维(CF)不同组合及掺量对裂缝自监测灵敏度系数(K)的影响;并基于分形理论研究了归一化处理后的电阻变化率-裂缝扩展宽度曲线(ρFCR-wCOD)的粗糙程度,以反映不同导电材料对监测信号电阻变化率-裂缝扩展宽度曲线(ρFCR-wCOD)噪声水平的影响。研究表明:用线性函数拟合混凝土裂缝智能化自监测信号ρFCR-wCOD曲线的效果较好,K可用拟合直线的斜率来表征;随着SF掺量的增加,试件的K随之减小;双掺SF与纳米CB试件表现出最佳的裂缝智能化自监测性能,适量纳米CB的掺入对混凝土裂缝监测的K值有提升作用,同时可降低ρFCR-wCOD曲线的噪声水平,随着CB掺量的增加,试件的K值呈现先增后减、分形维数D值呈先减后增的规律,纳米CB的最佳掺量为1.0~1.5 kg/m3;CF的掺入对K值有一定的负面影响,但掺入CF的试件裂缝监测信号D值随导电相掺量变化而变化的程度不大。

     

  • 图  1  试验装置图((a)电阻测试;(b)加载装置)

    Figure  1.  Experimental setup((a)Measurement of the electrical resistance; (b)Loading setup)

    图  2  单掺SF增强混凝土试件荷载-裂缝张开位移wCOD -电阻变化率ρFCR关系曲线

    Figure  2.  Load-crack opening displacement wCOD-fractional change in resistance ρFCR relationships of the concrete specimens with SF

    图  3  双掺SF、CB增强混凝土试件荷载-wCOD-ρFCR关系曲线

    Figure  3.  Load-wCOD-ρFCR relationships of the concrete specimens with SF and CB

    图  4  三掺SF、CB、CF增强混凝土试件荷载-wCOD-ρFCR关系曲线

    Figure  4.  Load-wCOD-ρFCR relationships of the concrete specimens with SF, CB and CF

    图  5  CF在混凝土中分散不均匀图像

    Figure  5.  CF unevenly dispersed in concrete matrix

    图  6  SF20CF0B1/混凝土试件电阻变化率ρ'FCR -裂缝张开位移w'COD曲线网格覆盖示意图

    Figure  6.  ρ'FCR-w'COD curves of SF20CF0B1/concrete covered with different grid sizes

    图  7  对数坐标下SF20CF0B1/concrete试件网格数N(δi)与网格尺寸(δi)关系

    Figure  7.  Relationship between ln[N(δi)] and ln(1/δi) of SF20CF0B1/concrete specimen

    图  8  混凝土裂缝截面处钢纤维随机分布图

    Figure  8.  Randomly distributed steel fibers on the cracked concrete section

    表  1  混凝土基准配合比

    Table  1.   Mix proportions of concrete kg/m3

    CementFly ashWaterFine aggregate
    (0-5 mm)
    Coarse aggregate
    (5-10 mm)
    SP
    390 155 272.5 848 822 5.5
    Note: SP—Superplasticizer.
    下载: 导出CSV

    表  2  硅酸盐水泥化学组分[20]

    Table  2.   Chemical composition of portland cement wt%

    CementCaOSiO2Al2O3Fe2O3MgOSO3
    P·O 42.561.7821.175.453.181.652.03
    下载: 导出CSV

    表  3  导电材料参数

    Table  3.   Parameters of conductive materials

    Conductive
    material
    Length/
    mm
    Diameter/
    nm
    Density/
    (g·cm−3)
    Steel fiber(SF) 35 0.55×106 7.85
    Carbon fiber(CF) 6 1.2×104-1.5×104 1.55-1.60
    Carbon black(CB) 30-120 0.3-0.5
    下载: 导出CSV

    表  4  混凝土试件的导电相掺量

    Table  4.   Dosages of the conductive admixtures of the concrete specimens kg/m3

    SpecimenSFCBCF
    SF20CF0B0/concrete 20 0 0
    SF40CF0B0/concrete 40 0 0
    SF60CF0B0/concrete 60 0 0
    SF20CF0B1concrete 20 1 0
    SF40CF0B1/concrete 40 1 0
    SF40CF0B1.5/concrete 40 1.5 0
    SF40CF0B2/concrete 40 2 0
    SF60CF0B1/concrete 60 1 0
    SF20CF2B1/concrete 20 1 2
    SF40CF2B1/concrete 40 1 2
    SF60CF2B1/concrete 60 1 2
    SF20CF4B1/concrete 20 1 4
    SF40CF4B1/concrete 40 1 4
    SF60CF4B1/concrete 60 1 4
    下载: 导出CSV

    表  5  混凝土试件智能化自监测的灵敏度系数

    Table  5.   Gauge factor of the self-sensing concrete specimens

    SpecimenKAverageStandard deviationR2
    SF20CF0B0/concrete 1.78 1.48 0.296 0.829
    SF40CF0B0/concrete 1.08 0.967
    SF60CF0B0/concrete 1.59 0.975
    SF20CF0B1/concrete 4.68 2.35 1.374 0.991
    SF40CF0B1/concrete 2.29 0.981
    SF40CF0B1.5/concrete 2.11 0.920
    SF40CF0B2/concrete 1.31 0.954
    SF60 CF0B1/concrete 1.36 0.950
    SF20CF2B1/concrete 0.77 1.51 0.697 0.915
    SF40CF2B1/concrete 1.49 0.949
    SF60CF2B1/concrete 2.64 0.988
    SF20CF4B1/concrete 1.21 0.954
    SF40CF4B1/concrete 1.98 0.981
    SF60CF4B1/concrete 0.97 0.974
    Notes: K—Sensing gauge factor; R2—Coefficient.
    下载: 导出CSV

    表  6  导电相掺杂强混凝土ρ'FCR-w'COD曲线分形维数D计算结果

    Table  6.   Fractal dimension D values of ρ'FCR-w'COD curve of the concrete specimens with different conductive materials

    SpecimenDAverageStandard deviation
    SF20CF0B0/concrete 1.410 1.431 0.042
    SF40CF0B0/concrete 1.480
    SF60CF0B0/concrete 1.403
    SF20CF0B1/concrete 1.251 1.290 0.040
    SF40CF0B1/concrete 1.295
    SF40CF0B1.5/concrete 1.254
    SF40CF0B2/concrete 1.323
    SF60CF0B1/concrete 1.329
    SF20CF2B1/concrete 1.384 1.383 0.007
    SF40CF2B1/concrete 1.373
    SF60CF2B1/concrete 1.383
    SF20CF4B1/concrete 1.392
    SF40CF4B1/concrete 1.378
    SF60CF4B1/concrete 1.387
    下载: 导出CSV
  • [1] CHEN P W, CHUNG D. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures,1993,2(1):22-30. doi: 10.1088/0964-1726/2/1/004
    [2] WEN S, CHUNG D. Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars[J]. Carbon,2006,44(8):1496-1502. doi: 10.1016/j.carbon.2005.12.009
    [3] YILDIRIM G, ÖZTÜRK O, AL-DAHAWI A, et al. Self-sensing capability of engineered cementitious composites: Effects of aging and loading conditions[J]. Construction and Building Materials,2020,231:117132. doi: 10.1016/j.conbuildmat.2019.117132
    [4] 韩宝国, 关新春, 欧进萍. 导电掺和料形态与水泥基材料压敏性的相关性[J]. 复合材料学报, 2004, 21(3):137-141. doi: 10.3321/j.issn:1000-3851.2004.03.026

    HAN B G, GUAN X C, OU J P. Correlation between shape of electric admixtures and piezoresistive effect of cement based composite materials[J]. Acta Materiae Compositae Sinica,2004,21(3):137-141(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.03.026
    [5] DING Y, CHEN Z, HAN Z, et al. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam[J]. Construction & Building Materials,2013,43(3):233-241.
    [6] DING Y, HAN Z, ZHANG Y, et al. Concrete with triphasic conductive materials for self-monitoring of cracking development subjected to flexure[J]. Composite Structures,2016,138:184-191. doi: 10.1016/j.compstruct.2015.11.051
    [7] DING Y, HUANG Y, ZHANG Y, et al. Self-monitoring of freeze-thaw damage using triphasic electric conductive concrete[J]. Construction & Building Materials,2015,101:440-446.
    [8] WEN S, CHUNG D. Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix compo-sites[J]. Carbon,2007,45(3):505-513. doi: 10.1016/j.carbon.2006.10.024
    [9] AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement & Concrete Composites,2012,34(7):866-873.
    [10] MATERAZZI A, UBERTINI F, D’ ALESSANDRO A. Carbon nanotube cement-based transducers for dynamic sensing of strain[J]. Cement & Concrete Composites,2013,37(1):2-11.
    [11] HAN B, ZHANG K, XUN Y, et al. Nickel particle-based self-sensing pavement for vehicle detection[J]. Measurement,2011,44(9):1645-1650. doi: 10.1016/j.measurement.2011.06.014
    [12] 范晓明, 董旭, 孙明清, 等. 掺CCCW的碳纤维石墨水泥基复合材料的导电及压阻特性[J]. 复合材料学报, 2009, 26(6):138-142. doi: 10.3321/j.issn:1000-3851.2009.06.023

    FAN X M, DONG X, SUN M Q, et al. Electrical characteristic and piezoresistivity of carbon fiber graphite cement-based composites containing CCCW[J]. Acta Materiae Compositae Sinica,2009,26(6):138-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.023
    [13] 杨波, 陈光顺, 李姜, 等. 多壁碳纳米管增强炭黑/聚丙烯导电复合材料导电行为[J]. 复合材料学报, 2009, 26(4):41-46. doi: 10.3321/j.issn:1000-3851.2009.04.007

    YANG B, CHEN G S, LI J, et al. Multi-wall carbon nanotubes enhanced conductive behaviors of CB/PP electrical conductive composites[J]. Acta Materiae Compositae Sinica,2009,26(4):41-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.007
    [14] WILSON J. Sensor technology handbook[M]. Burlington: Elsevier, 2004: 1-15.
    [15] UBERTINI F, D'ALESSANDRO A, MATERAZZI A L, et al. Novel nanocomposite clay brick for strain sensing in structural masonry[C]//2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe). IEEE, 2017: 1-4.
    [16] 韩宝国. 压敏碳纤维水泥石性能、传感器制品与结构[D]. 哈尔滨: 哈尔滨工业大学, 2005.

    HAN Baoguo. Carbon fiber cement paste pressure-sensitive sensors and self-monitoring concrete structures[D]. Harbin: Harbin Institute of Technology, 2005(in Chinese).
    [17] ADRESI M, HASSANI A, TULLIANI J, et al. A study of the main factors affecting the performance of self-sensing concrete[J]. Advances in Cement Research,2016,29(5):216-226.
    [18] SUN M, LIEW R, ZHANG M, et al. Development of cement-based strain sensor for health monitoring of ultra high strength concrete[J]. Construction & Building Materials,2014,65(9):630-637.
    [19] UBERTINI F, MATERAZZI A, D’ ALESSANDRO A, et al. Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors[J]. Engineering Structures,2014,60(2):265-275.
    [20] 洪雷, 王苏岩. 超缓凝剂对硅酸盐水泥砂浆性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2006(5):773-777.

    HONG L, WANG S Y. The influence of super-retarding agent on the properties of Portland cement mortar[J]. Journal of Shenyang Jianzhu University (Natural Science),2006(5):773-777(in Chinese).
    [21] American Society for Testing and Materials. Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading): ASTM C 1609—2019[S]. West Conshohocken: ASTM Internationa, 2019.
    [22] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Standard test method for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Publishing House, 2010(in Chinese).
    [23] 彭瑞东, 谢和平, 鞠杨. 二维数字图像分形维数的计算方法[J]. 中国矿业大学学报, 2004, 33(1):19-24. doi: 10.3321/j.issn:1000-1964.2004.01.005

    PENG R D, XIE H P, JU Y. Computation method of fractal dimension for 2-D digital image[J]. Journal of China University of Mining & Technology,2004,33(1):19-24(in Chinese). doi: 10.3321/j.issn:1000-1964.2004.01.005
    [24] 谢和平. 分形: 岩石力学导论[M]. 北京: 科学出版社, 1996.

    XIE H P. Fractal: Introduction to rock mechanics[M]. Beijing: Science Press, 1996(in Chinese).
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  295
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回