留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同粒径TiB2/Cu复合材料热传导模拟与实验

张祥峰 国秀花 宋克兴 冯江 林焕然 王旭

张祥峰, 国秀花, 宋克兴, 等. 不同粒径TiB2/Cu复合材料热传导模拟与实验[J]. 复合材料学报, 2020, 37(10): 2534-2542. doi: 10.13801/j.cnki.fhclxb.20200224.003
引用本文: 张祥峰, 国秀花, 宋克兴, 等. 不同粒径TiB2/Cu复合材料热传导模拟与实验[J]. 复合材料学报, 2020, 37(10): 2534-2542. doi: 10.13801/j.cnki.fhclxb.20200224.003
ZHANG Xiangfeng, GUO Xiuhua, SONG Kexing, et al. Thermal conduction simulation and verification of TiB2/Cu composites with different particle sizes[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2534-2542. doi: 10.13801/j.cnki.fhclxb.20200224.003
Citation: ZHANG Xiangfeng, GUO Xiuhua, SONG Kexing, et al. Thermal conduction simulation and verification of TiB2/Cu composites with different particle sizes[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2534-2542. doi: 10.13801/j.cnki.fhclxb.20200224.003

不同粒径TiB2/Cu复合材料热传导模拟与实验

doi: 10.13801/j.cnki.fhclxb.20200224.003
基金项目: 国家自然科学基金(51605146; U1502274); 河南省高等学校青年骨干教师培养计划项目(2018GGJS045); 中国博士后基金(2018 M632769); 河南省“创新型科技团队”计划(182101510003)
详细信息
    通讯作者:

    国秀花,高级工程师,研究方向为载流摩擦高性能铜基复合材料设计及其磨损机制 E-mail: guoxiuhua@haust.edu.cn

  • 中图分类号: TB331

Thermal conduction simulation and verification of TiB2/Cu composites with different particle sizes

  • 摘要: 采用ANSYS对不同粒径TiB2/Cu复合材料热传导过程进行模拟。采用粉末冶金法制备了不同粒径TiB2增强的Cu复合材料,采用LINSEIS LFA1600激光导热仪测试了室温至280℃下的TiB2/Cu复合材料热传导性能变化,并与模拟结果进行对比。结果表明:热导率模拟结果与实验结果吻合较好。在50~200℃之间,复合材料热导率变化不大,在6%~9%范围内波动。200℃之后,模拟值与实验值均呈现出随温度升高而增大的趋势,且吻合度较高。这是由于温度低于200℃时,在模拟过程中未考虑材料界面处两相不同热膨胀系数的影响,导致模拟值与实验值有较大的差异。当温度高于200℃时,模拟值和实验值吻合程度趋于稳定。在200℃时,由于两相热膨胀系数的影响,复合材料内部界面处等效应力大于Cu基体屈服强度,使其发生塑性变形,从而引起热导率发生较大幅度变化。此外,热导率随着TiB2粒径的增大呈现出先提高后降低的趋势,在10 μm时达到最大。这是由于当颗粒直径小于临界平均直径时,颗粒直径的增大会减少界面数量,从而降低界面热阻。当颗粒直径大于临界平均直径时,平均自由程l的急剧增加导致热导率降低。

     

  • 图  1  激光闪射法过程示意图

    Figure  1.  Schematic diagram of laser flashing process

    图  2  TiB2/Cu复合材料整体模型及有限元模型

    Figure  2.  Integral model and finite element model of TiB2/Cu composites

    图  3  纯Cu和不同TiB2粒径的TiB2/Cu复合材料的显微组织

    Figure  3.  Microstructure of pure Cu and TiB2/Cu composites with different TiB2 particle sizes

    图  4  不同温度下2 μm TiB2/Cu复合材料热导率模拟结果及温度梯度分布图

    Figure  4.  Simulation results of thermal conductivity and temperature gradient profiles of 2 μm TiB2/Cu composites with different temperatures

    图  5  不同温度下不同TiB2粒径的TiB2/Cu复合材料热导率模拟值与实验值

    Figure  5.  Simulated and experimental values of thermal conductivities of TiB2/Cu composites with different TiB2 particle sizes at different temperatures

    图  6  280℃时不同粒径的TiB2/Cu复合材料热导率模拟结果及温度梯度分布图

    Figure  6.  Simulation results of thermal conductivity and temperature gradient profiles of TiB2/Cu composites with different TiB2 particle sizes at 280℃

    图  7  不同粒径的TiB2/Cu复合材料在280℃下热导率的实验值、模拟值及预测值

    Figure  7.  Experimental, simulated and predicted values of thermal conductivities of TiB2/Cu composites with different TiB2 particle sizes at 280℃

    表  1  TiB2/Cu复合材料内部界面应力P与界面处等效应力σe的计算值

    Table  1.   Calculated stress P and equivalent stress σe at the interface in TiB2/Cu composites

    Tempurature/℃50100150200250280
    Interfacial stress/MPa 20.7 62.1 103.5 144.9 186.3 211.1
    σe/MPa 9.3 27.9 46.5 65.2 83.8 94.9
    下载: 导出CSV
  • [1] WANG L, LI J, CHE Z, et al. Combining Cr precoating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites[J]. Journal of Alloys and Compounds,2018,749:1098-1105. doi: 10.1016/j.jallcom.2018.03.241
    [2] CHEN J, NIU P, WEI T, et al. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites[J]. Journal of Alloys and Compounds,2015,649:630-634. doi: 10.1016/j.jallcom.2015.07.125
    [3] AHN B W, KIM J H, HAMAD K, et al. Microstructure and mechanical properties of a B4C particle-reinforced Cu matrix composite fabricated by friction stir welding[J]. Journal of Alloys and Compounds,2017,693:688-691. doi: 10.1016/j.jallcom.2016.08.304
    [4] 李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.

    LI Guohui, LIU Yong, GUO Xiuhua, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Materiae Compositae Sinica,2018,35(3):616-622(in Chinese).
    [5] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料制备与载流摩擦磨损的特性[J]. 复合材料学报, 2019, 36(10):93-101.

    ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particle[J]. Acta Materiae Compositae Sinica,2019,36(10):93-101(in Chinese).
    [6] WANG P, ZHANG H, YIN J, et al. Wear and friction behaviours of copper mesh and flaky graphite-modified carbon/carbon composite for sliding contact material under electric current[J]. Wear,2017,380:59-65.
    [7] DINAHARAN I, SARAVANAKUMAR S, KALAISELVAN K, et al. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing[J]. Journal of Asian Ceramic Societies,2017,5(3):295-303. doi: 10.1016/j.jascer.2017.06.002
    [8] 郭明星, 汪明朴, 李周, 等. TiB2/Cu金属基复合材料的研究[J]. 材料导报, 2004, 18(8):39-42. doi: 10.3321/j.issn:1005-023X.2004.08.012

    GUO Mingxing, WANG Mingpu, LI Zhou, et al. The studies of TiB2/Cu metal matrix composites[J]. Materials Review,2004,18(8):39-42(in Chinese). doi: 10.3321/j.issn:1005-023X.2004.08.012
    [9] 王耐艳, 涂江平, 杨友志, 等. Cu-纳米TiB2原位复合材料的摩擦磨损性能[J]. 摩擦学学报, 2002, 22(6):414-418. doi: 10.3321/j.issn:1004-0595.2002.06.002

    WANG Naiyan, TU Jiangping, YANG Youzhi, et al. Dry sliding friction and wear behavior of Cu-nanosized TiB2 in-situ composites[J]. Tribology,2002,22(6):414-418(in Chinese). doi: 10.3321/j.issn:1004-0595.2002.06.002
    [10] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review letters,2001,87(21):215502. doi: 10.1103/PhysRevLett.87.215502
    [11] GUO J, WANG X, WANG T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique[J]. Journal of Applied Physics,2007,101(6):063537. doi: 10.1063/1.2714679
    [12] CHENG Z, LIU L, XU S, et al. Temperature dependence of electrical and thermal conduction in single silver nanowire[J]. Scientific Reports,2015,5:10718. doi: 10.1038/srep10718
    [13] CORBINO O. Periodic resistance changes of fine metal threads which are brought together by alternating streams as well as deduction of their thermo characteristics at high temperatures[J]. Physikalische Zeitschrift,1911,12:292-295.
    [14] PARKER W, JENKINS R, BUTLER C, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics,1961,32(9):1679-1684. doi: 10.1063/1.1728417
    [15] GOLI P, NING H, LI X, et al. Thermal properties of graphene-copper-graphene heterogeneous films[J]. Nano Letters,2014,14(3):1497-1503. doi: 10.1021/nl404719n
    [16] YU G C, WU L Z, FENG L J. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films[J]. Materials & Design,2015,88:1063-1070.
    [17] CAHILL D G. Analysis of heat flow in layered structures for time-domain thermoreflectance[J]. Review of Scientific Instruments,2004,75(12):5119-5122. doi: 10.1063/1.1819431
    [18] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature,1928,121(3048):501-502.
    [19] 徐辉. 高熔点高热导率铜合金组织与性能研究[D]. 南昌: 南昌航空大学, 2012.

    XU Hui. Study on microstructure and properties of high melting point and high thermal conductivity copper alloy[D]. Nanchang: Nanchang Hangkong University, 2012(in Chinese).
    [20] 冯薇薇. 粉末冶金法制备Cu/TiB2复合材料及其性能的研究[D]. 上海: 华东理工大学, 2014.

    FENG Weiwei. Study on preparation and properties of Cu/TiB2 composites by powder metallurgy[D]. Shanghai: East China University of Science and Technology, 2014(in Chinese).
    [21] HASSELMAN D, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials,1987,21(6):508-515. doi: 10.1177/002199838702100602
    [22] 高晓霞. 金属基复合材料界面热传导性的研究[D]. 北京: 北京工业大学, 2000.

    GAO Xiaoxia. Study of the interfacial thermal conductivity of metal matrix composites[D]. Beijing: Beijing University of Technology, 2000(in Chinese).
    [23] 张胜利, 宋克兴, 国秀花, 等. TiB2颗粒混杂对TiB2/Cu复合材料微观组织和性能的影响[J]. 材料热处理学报, 2018, 39(8):7-13.

    ZHANG Shengli, SONG Kexing, GUO Xiuhua, et al. Effect of mixing TiB2 particles on microstructure and properties of TiB2/Cu composites[J]. Transactions of Materials and Heat Treatment,2018,39(8):7-13(in Chinese).
    [24] 杜洛金, 奚同庚, 王梅花. 固体热物理性质导论-理论和测量[M]. 北京: 中国计量出版社, 1987.

    DU Luojin, XI Tonggeng, WANG Meihua. Introduction to solid thermophysical properties-theory and measurement[M]. Beijing: China Metrology Publishing House, 1987(in Chinese).
    [25] GUO X, SONG K, LIANG S, et al. Effect of the thermal expansion characteristics of reinforcements on the electrical wear performance of copper matrix composite[J]. Tribology Transactions,2014,57(2):283-291. doi: 10.1080/10402004.2013.870271
    [26] 郭源. 纳米线热导率的尺寸效应[D]. 湘潭: 湘潭大学, 2015.

    GUO Yuan. Size effect of nanowire thermal conductivity[D]. Xiangtan: Xiangtan University, 2015(in Chinese).
    [27] 马双彦, 王恩泽, 鲁伟员, 等. 金刚石/铜复合材料热导率研究[J]. 热加工工艺, 2008, 37(4):36-38. doi: 10.3969/j.issn.1001-3814.2008.04.011

    MA Shuangyan, WANG Enze, LU Weiyuan, et al. Research on thermal conductivity of diamond/copper composites[J]. Hot Working Technology,2008,37(4):36-38(in Chinese). doi: 10.3969/j.issn.1001-3814.2008.04.011
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  298
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回