留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解

宋萃 戚明颖 刘金芳 祝茜

宋萃, 戚明颖, 刘金芳, 等. Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解[J]. 复合材料学报, 2020, 37(6): 1418-1425. doi: 10.13801/j.cnki.fhclxb.20200220.001
引用本文: 宋萃, 戚明颖, 刘金芳, 等. Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解[J]. 复合材料学报, 2020, 37(6): 1418-1425. doi: 10.13801/j.cnki.fhclxb.20200220.001
SONG Cui, QI Mingying, LIU Jinfang, et al. Preparation of Ag3PO4/HAP composite photocatalyst and its efficient degradation of methylene blue[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1418-1425. doi: 10.13801/j.cnki.fhclxb.20200220.001
Citation: SONG Cui, QI Mingying, LIU Jinfang, et al. Preparation of Ag3PO4/HAP composite photocatalyst and its efficient degradation of methylene blue[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1418-1425. doi: 10.13801/j.cnki.fhclxb.20200220.001

Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解

doi: 10.13801/j.cnki.fhclxb.20200220.001
基金项目: 山东大学(威海)—迪尚集团校企协同竞帆计划
详细信息
    通讯作者:

    祝茜,博士,教授,研究方向为海洋生物学 E-mail:qianzhu@sdu.edu.cn

  • 中图分类号: O643.32+2

Preparation of Ag3PO4/HAP composite photocatalyst and its efficient degradation of methylene blue

  • 摘要: 以天然废弃物牡蛎壳为原料,利用沉淀法和水热法制备出高纯度的羟基磷灰石(HAP),负载Ag3PO4后制备出具有可见光响应的复合光催化剂Ag3PO4/HAP,并以亚甲基蓝(MB)为反应模型考察了不同催化剂的降解性能。利用SEM、TEM、XRD、BET、XPS、UV-Vis、电子自旋共振(ESR)等仪器对样品进行表征。结果表明,两种方法均可合成HAP材料,但水热法合成的材料纯度更高,且合成出了纳米等级的HAP;Ag3PO4的添加未改变HAP的组成和结构,却改善了材料对可见光的吸收性能。与沉淀法相比,水热法制备的HAP具有更好的吸附性能,其比表面积为46.63 m2·g-1;且随着Ag3PO4质量的增加,复合材料的比表面积逐渐增大。水热法制备的Ag3PO4/HAP表现出了较高的活性,其中1:2-Ag3PO4/HAP催化剂的表现更突出,在10 min时即可达到50%的降解率,并在40 min内达到完全降解;经自由基捕获实验证实,参与降解反应的主要活性物种为•O2和h+

     

  • 图  1  光催化反应装置示意图

    Figure  1.  Schematic diagram of photocatalytic reactor

    图  2  HAP和Ag3PO4/HAP(H)复合材料的XRD图谱

    Figure  2.  XRD patterns of HAP and Ag3PO4/HAP(H) composites

    HAP(H)—HAP(Hydrothermal method)

    图  3  HAP和Ag3PO4/HAP(H)复合材料的SEM图像和TEM图像

    Figure  3.  SEM images and TEM images of HAP and Ag3PO4/HAP(H) composites

    ((a) HAP(P); ((b),(e),(g)) HAP(H); (c) 1:4-Ag3PO4/HAP(H); ((d),(f),(h)) 1:2-Ag3PO4/HAP(H))

    图  4  HAP和Ag3PO4/HAP复合材料的N2吸附-脱附等温曲线

    Figure  4.  N2 adsorption-desorption isotherm curves of HAPand Ag3PO4/HAP composites

    图  5  HAP(H)和1:2-Ag3PO4/HAP(H)复合材料催化剂的XPS图谱

    Figure  5.  XPS spectra of HAP(H) and 1:2-Ag3PO4/HAP(H) composite photocatalyst((a) HAP(H) and 1:2-Ag3PO4/HAP(H) composite;(b) 1:2-Ag3PO4/HAP(H) composite)

    图  6  HAP(H)和1:2-Ag3PO4/HAP(H)复合材料的紫外-可见吸收光谱Fig. 6 UV-Vis absorption spectroscopy of HAP(H) and 1:2-Ag3PO4/HAP(H) composites

    图  7  不同催化剂降解亚甲基蓝(MB)溶液的可见光催化性能比较

    Figure  7.  Comparison of photoactivity for degradation of methylene blue(MB) by different catalysts under visible light irradiation

    图  8  1:2-Ag3PO4/HAP(H)复合材料催化剂的稳定性

    Figure  8.  Catalytic stability of 1:2-Ag3PO4/HAP(H) composite

    图  9  1:2-Ag3PO4/HAP(H)复合材料的自由基捕获实验(a)和ESR实验(b)结果

    Figure  9.  Material captured test of free radicals(a) and the ESR experimental results(b) of 1:2-Ag3PO4/HAP(H)

    表  1  Ag3PO4/羟基磷灰石(HAP)复合材料的质量配比

    Table  1.   Mass ratios of Ag3PO4/hydroxyapatite(HAP) composites

    SampleMass of AgNO3/gMass of HAP/g
    1∶4-Ag3PO4/HAP0.251
    1∶3-Ag3PO4/HAP0.331
    1∶2-Ag3PO4/HAP0.501
    Note: HAP—Hydroxyapatite.
    下载: 导出CSV

    表  2  HAP和Ag3PO4/HAP 复合材料的孔结构Table 2 Pore texture of HAP and Ag3PO4/HAP composites

    SampleSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore diameter/nm
    HAP(P)39.680.30325.86
    1∶4-Ag3PO4/HAP(P)37.800.24024.93
    HAP(H)46.630.38424.18
    1∶4-Ag3PO4/HAP(H)26.170.22224.76
    1∶3-Ag3PO4/HAP(H)45.830.36221.63
    1∶2-Ag3PO4/HAP(H)59.950.42319.83
    下载: 导出CSV
  • [1] YI Z G, YE J H, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials,2010,9(7):559-564. doi: 10.1038/nmat2780
    [2] RAWAL S B, SANG D S WAN I L. Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation[J]. Catalysis Communications,2012,17(1):131-135. doi: 10.1016/j.catcom.2011.10.034
    [3] SHAO N, WANG J, WANG D, et al. Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion[J]. Applied Catalysis B,2016,203:964-978. doi: 10.1016/j.apcatb.2016.11.008
    [4] TENG W, LI X, ZHAO Q, et al. Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation[J]. Journal of Materials Chemistry,2013,1(32):9060-9068. doi: 10.1039/c3ta11254c
    [5] TAHERI M E, PETALA A, FRONTISTIS Z, et al. Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2 composites under solar radiation[J]. Catalysis Today,2017,280:99-107. doi: 10.1016/j.cattod.2016.05.047
    [6] YANG L, DUAN W, JIANG H, et al. Mesoporous TiO2@Ag3PO4 photocatalyst with high adsorbility and enhanced photocatalytic activity under visible light[J]. Materials Research Bulletin,2015,70:129-136. doi: 10.1016/j.materresbull.2015.04.029
    [7] WEI L, WANG M L, XU C X, et al. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B[J]. Materials Research Bulletin,2013,48(1):106-113. doi: 10.1016/j.materresbull.2012.10.015
    [8] SHINGER M I, IDRIS A M, DEVARAMANI S, et al. In situ fabrication of graphene-based Ag3PO4@AgBr composite with enhanced photocatalytic activity under simulated sunlight[J]. Journal of Environmental Chemical Engineering,2017,5(2):1526-1535. doi: 10.1016/j.jece.2017.02.032
    [9] FENG B, WU Z Y, LIU J S, et al. Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB[J]. Applied Catalysis B: Environmental,2017,206:242-251. doi: 10.1016/j.apcatb.2017.01.029
    [10] DUAN Y, DENG L, SHI Z, et al. Assembly of graphene on Ag3PO4/AgI for effective degradation of carbamazepine under visible-light irradiation: Mechanism and degradation pathways[J]. Chemical Engineering Journal,2019,359:1379-1390. doi: 10.1016/j.cej.2018.11.040
    [11] KUMAR S, SURENDAR T, BARUAH A, et al. Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation[J]. Journal of Materials Chemistry,2007,1(17):5333-5340. doi: 10.1039/c3ta00186e
    [12] SUN M, ZENG Q, ZHAO X, et al. Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: Enhanced charge separation and excellent visible-light driven photocatalytic activity[J]. Journal of Hazardous Materials,2017,339:9-21. doi: 10.1016/j.jhazmat.2017.06.003
    [13] LIU L, QI Y, LU J, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Applied Catalysis B,2016,183:133-141. doi: 10.1016/j.apcatb.2015.10.035
    [14] HU Z, LIU J C, GE M. Role of reactive oxygen species in the photocatalytic degradation of methyl orange and tetracycline by Ag3PO4 polyhedron modified with g-C3N4[J]. Materials Science in Semiconductor Processing,2020,105:104731-1043740. doi: 10.1016/j.mssp.2019.104731
    [15] ZHANG C LIU J. Stable chitin whisker/Ag3PO4 composite photocatalyst with enhanced visible light induced photocatalytic activity[J]. Materials Letters,2017,196:91-94. doi: 10.1016/j.matlet.2017.02.120
    [16] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019.

    National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: Statistics Press of China, 2019(in Chinese).
    [17] 朱斌, 何远怀, 孟增东, 等. 多孔ZnO羟基磷灰石生物复合材料的制备与性能[J]. 复合材料学报, 2019, 36(11):2637-2643.

    ZHU B, HE Y H, MENG Z D, et al. Fabrication and properties of porous ZnO/ hydroxyapatite biocomposites[J]. Acta Materiae Compositae Sinica,2019,36(11):2637-2643(in Chinese).
    [18] GRÜNERT W, BRüCKNER A, HOFMEISTER H, et al. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation[J]. Journal of Physical Chemistry B,2004,108(18):5709-5717. doi: 10.1021/jp049855e
    [19] ZHANG H, WANG G, CHEN D, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag[J]. Chemistry of Materials,2008,77(1):87-95. doi: 10.1021/cm801796q
    [20] ZHANG X F, CHAIMAYO W, YANG C, et al. Silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment[J]. Surface and Coatings Technology,2017,325:39-45. doi: 10.1016/j.surfcoat.2017.06.013
    [21] CAO J, LUO B, LIN H, et al. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange[J]. Journal of Hazardous Materials,2012,217-218:107-115. doi: 10.1016/j.jhazmat.2012.03.002
    [22] CHANG Q, MENG X, HU S L, et al. Hydroxyapatite/N-doped carbon dots/Ag3PO4 composite for improved visible-light photocatalytic performance[J]. RSC Advances,2017,7(48):30191-30198. doi: 10.1039/C7RA04881E
    [23] TANG C, LIU E, FAN J, et al. Heterostructured Ag3PO4/TiO2 nano-sheet film with high efficiency for photodegradation of methylene blue[J]. Ceramics International,2014,40(10):15447-15453. doi: 10.1016/j.ceramint.2014.06.116
    [24] XIE Y, HUANG Z, ZHANG Z, et al. Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag3PO4 with high surface energy[J]. Applied Surface Science,2016,389:56-66. doi: 10.1016/j.apsusc.2016.07.088
    [25] CHAI Y Y, DING J, WANG L, et al. Enormous enhancement in photocatalytic performance of Ag3PO4/HAp composite: A Z-scheme mechanism insight[J]. Applied Catalysis B,2015,179:29-36. doi: 10.1016/j.apcatb.2015.05.006
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  217
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-20
  • 网络出版日期:  2020-02-20
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回