留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能自支撑不锈钢网@MoS2锂离子电池负极材料

岳红伟 陈淑君 卢帆 铁伟伟 朱聪旭

岳红伟, 陈淑君, 卢帆, 等. 高性能自支撑不锈钢网@MoS2锂离子电池负极材料[J]. 复合材料学报, 2020, 37(6): 1476-1482. doi: 10.13801/j.cnki.fhclxb.20200219.002
引用本文: 岳红伟, 陈淑君, 卢帆, 等. 高性能自支撑不锈钢网@MoS2锂离子电池负极材料[J]. 复合材料学报, 2020, 37(6): 1476-1482. doi: 10.13801/j.cnki.fhclxb.20200219.002
YUE Hongwei, CHEN Shujun, LU Fan, et al. High performance freestanding stainless steel net@MoS2 lithium-ion battery anode material[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1476-1482. doi: 10.13801/j.cnki.fhclxb.20200219.002
Citation: YUE Hongwei, CHEN Shujun, LU Fan, et al. High performance freestanding stainless steel net@MoS2 lithium-ion battery anode material[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1476-1482. doi: 10.13801/j.cnki.fhclxb.20200219.002

高性能自支撑不锈钢网@MoS2锂离子电池负极材料

doi: 10.13801/j.cnki.fhclxb.20200219.002
基金项目: 国家自然科学基金(11804289;21703195);河南省教育厅项目(18A430029);河南省科技厅项目(182102210501)
详细信息
    通讯作者:

    岳红伟,博士,副教授,研究方向为新能源材料与器件 E-mail:yuehw207@163.com

  • 中图分类号: TM912, TB383.1

High performance freestanding stainless steel net@MoS2 lithium-ion battery anode material

  • 摘要: 为了提高MoS2作为Li离子电池负极材料整体的导电性和稳定性,将纳米化的MoS2与其它导电性好的材料进行复合,通过水热法在导电基底不锈钢网(Stainless steel net, SS)上原位合成了一层MoS2纳米花,制备了无粘结剂的自支撑结构的SS@MoS2负极材料。纳米花状的MoS2和导电性优异的SS提高了电子和Li离子的扩散速率,同时改善了电极的反应动力学。当作为Li离子电池负极材料时,SS@MoS2电极表现出优异的储Li性能,特别是具有显著的大倍率充放电性能,即在1 000 mA/g的大电流密度下循环600次,比容量仍保持在862.1 mA·h/g。

     

  • 图  1  SS@MoS2的XRD图谱

    Figure  1.  XRD pattern of SS@MoS2

    图  2  SS@MoS2不同分辨率的SEM图像((a)~(c))和断面SEM图像(d)

    Figure  2.  SEM images of SS@MoS2 at different magnifications ((a)-(c)) and cross-section SEM image (d)

    图  3  SS@MoS2的TEM图像

    Figure  3.  TEM images of SS@MoS2

    图  4  SS@MoS2中Mo 3d (a)和S 2p (b)结合能附近的高分辨XPS图谱

    Figure  4.  High-resolution XPS spectra of Mo 3d(a) and S 2p (b) of SS@MoS2

    图  5  SS@MoS2电极的前五次循环伏安曲线

    Figure  5.  Cyclic voltammogram curves of SS@MoS2 electrode in the first five cycles

    图  6  SS@MoS2和纯MoS2电极在电流密度为100 mA/g时的循环性能(a)和SS@MoS2电极相应的充放电曲线(b)

    Figure  6.  Cycling performance of SS@MoS2 and pure MoS2 electrodes at current density of 100 mA/g (a) and charge-discharge voltage profiles of SS@MoS2 (b)

    图  7  SS@MoS2电极在1 000 mA/g大电流密度下的长循环性能

    Figure  7.  Cycling performance of SS@MoS2 electrode at high current density of 1 000 mA/g

    图  8  SS@MoS2电极的交流阻抗谱

    Figure  8.  Nyquist plots of SS@MoS2 electrode

    图  9  SS@MoS2电极在100 mA/g下循环150次后的SEM图像

    Figure  9.  SEM image of the SS@MoS2 electrode after 150 discharge-charge cycles at rate of 100 mA/g

  • [1] YUE H W, CHEN S J, LI P J, ZHU C X, et al. Lemongrass-like Bi2S3 as a high-performance anode material for lithium-ion batteries[J]. Ionics,2019,25:3587-3592. doi: 10.1007/s11581-019-02932-7
    [2] 梁国东, 潘鹤政, 孙晓刚, 等. SnO2-Fe2O3复合材料应用于碳纳米管集流体对锂离子电池性能的影响[J]. 复合材料学报, 2019, 36(7):1753-1760.

    LIANG G D, PAN H Z, SUN X G, et al. Effect of SnO2-Fe2O3 composites on performance of carbon nanotubes current collectors for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2019,36(7):1753-1760(in Chinese).
    [3] YUE H W, LI Q, LIU D Q, HOU X Y, et al. High-yield fabrication of graphene-wrapped silicon nanoparticles for self-support and binder-free anodes of lithium-ion batteries[J]. Journal of Alloys and Compounds,2018,744:243-251. doi: 10.1016/j.jallcom.2018.02.066
    [4] PARK Y, OH M, KIM J H. Well-dispersed ZnFe2O4 nanoparticles onto graphene as superior anode materials for lithium ion batteries[J]. Energies,2019,12:304. doi: 10.3390/en12020304
    [5] NI S B, ZHENG B, LIU J L, CHAO D L, et al. Self-adaptive electrochemical reconstruction boosted exceptional Li+ ion storage in a Cu3P@C anode[J]. Journal of Materials Chemistry A,2018,6:18821-18826. doi: 10.1039/C8TA04959A
    [6] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources,2010,195:2419. doi: 10.1016/j.jpowsour.2009.11.048
    [7] LIU G L, CUI J, LUO R J, et al. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage[J]. Applied Surface Science,2019,469:854-863. doi: 10.1016/j.apsusc.2018.11.067
    [8] XIE D, ZHANG M, CHENG F L, et al. Hierarchical MoS2@Polypyrrole core-shell microspheres with enhanced electrochemical performances for lithium storage[J]. Electrochimica Acta,2018,269:632-639. doi: 10.1016/j.electacta.2018.03.068
    [9] WANG J G, ZHOU R, JIN D D, et al. Uniform growth of MoS2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries[J]. Electrochimica Acta,2017,231:396-402. doi: 10.1016/j.electacta.2017.01.108
    [10] ZHANG F, TANG Y B, YANG Y, et al. In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries[J]. Electrochimica Acta,2016,211:404-410. doi: 10.1016/j.electacta.2016.05.181
    [11] PAN Y M, ZHANG J J, LU H B. Uniform yolk-shell MoS2@carbon microsphere anodes for high-performance lithium-ion batteries[J]. Chemistry—A European Journal,2017,23:9937-9945. doi: 10.1002/chem.201701691
    [12] CHEN F, WU L, ZHOU Z P, et al. MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability[J]. Chinese Chemical Letters,2019,30:197-202. doi: 10.1016/j.cclet.2018.10.007
    [13] LI H J, SU Q M, KANG J W, et al. MoS2 nanosheets attached on carbon microspheres used as anodes for lithium ion batteries[J]. Ceramics International,2018,44:5311-5318. doi: 10.1016/j.ceramint.2017.12.148
    [14] ZHU Q B, ZHAO C C, BIAN Y X, et al. MoS2/nitrogen-doped carbon hybrid nanorods with expanded interlayer spacing as an advanced anode material for lithium ion batteries[J]. Synthetic Metals,2018,235:103-109. doi: 10.1016/j.synthmet.2017.11.009
    [15] GUO B J, FENG Y, CHEN X F, et al. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes[J]. Applied Surface Science,2018,434:1021-1029. doi: 10.1016/j.apsusc.2017.11.018
    [16] ZHANG Z J, ZHAO H L, TENG Y Q, et al. Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: Electrochemical application for highly stable and ultrafast lithium storage[J]. Advanced Energy Materials,2017,8:1700174.
    [17] LU C X, LIU W W, LI H, et al. A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries[J]. Chemical Communication,2014,50:3338-3340. doi: 10.1039/C3CC49647C
    [18] ZHAO C Y, KONG J H, YAO X Y, et al. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries[J]. ACS Applied Material Interfaces,2014,6:6392-6398. doi: 10.1021/am4058088
    [19] DENG Z N, JIANG H, HU Y J, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Advanced Materials,2017,29:1603020. doi: 10.1002/adma.201603020
    [20] XUE S K, YAO S S, JING M X, et al. Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries[J]. Electrochimica Acta,2019,299:549-559. doi: 10.1016/j.electacta.2019.01.044
    [21] MA L, ZHOU X P, XU L M, et al. Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance[J]. Electrochimica Acta,2015,167:39-47. doi: 10.1016/j.electacta.2015.03.129
    [22] CAO S M, SHI L Y, MIAO M, et al. Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils[J]. Electrochimica Acta,2019,298:22-30. doi: 10.1016/j.electacta.2018.12.067
    [23] YUE H W, LI F, YANG Z B, et al. Facile preparation of Mn3O4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:17352-17358. doi: 10.1039/C4TA04095C
    [24] LI X W, SHANG X N, LI D, et al. Facile synthesis of porous MnO microspheres for high-performance lithium-ion batteries[J]. Particle & Particle Systems Characterization,2014,31:1001-1007.
    [25] AURBACH D, LEVI M D, LEVI E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of the Electrochemical Society,1998,145:3024-3034. doi: 10.1149/1.1838758
    [26] 陈淑君, 岳红伟, 柴续, 等. 石墨烯桥联碳-聚乙二醇包覆的Si纳米颗粒Li离子电池复合负极材料[J].复合材料学报,2020,37(4):978-984.

    CHEN S J, YUEH H W, CHAI X, et al. Graphene bridged carbon-polyethylene glycol-coated Si nanoparticle as anode material for lithium ion [J]. Acta Materiae Compositae Sinica, 2020, 37(4): 978-984 (in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  1306
  • HTML全文浏览量:  203
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-15
  • 网络出版日期:  2020-02-19
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回