留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响

薛维培 刘晓媛 姚直书 程桦 李昊鹏

薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001
引用本文: 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001
XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001
Citation: XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001

不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响

doi: 10.13801/j.cnki.fhclxb.20200219.001
基金项目: 安徽省自然科学基金青年项目(1908085QE185);中国博士后科学基金面上项目(2018M642502);安徽省高等学校自然科学研究重点项目(KJ2018A0098);国家自然科学基金面上项目(51674006; 51874005)
详细信息
    通讯作者:

    薛维培,博士,副教授,硕士生导师,研究方向为混杂纤维混凝土水力耦合特性及耐久性  E-mail:xueweipei@163.com

  • 中图分类号: TB528

Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete

  • 摘要: 为了研究玄武岩纤维增强混凝土在高温和力学两种损伤源下的孔隙结构变化特征,采用核磁共振(NMR)和扫描电镜(SEM)技术,观察试件T2谱分布、孔径分布、孔洞和裂隙发育情况。结果表明,高温作用后基准混凝土、短玄武岩纤维增强混凝土、长玄武岩纤维增强混凝土均呈微孔数量不断减小、介孔数量不断增加的趋势。通过对比发现,长玄武岩纤维增强混凝土T2谱主峰孔隙数量最多,孔径分布最大。以长玄武岩纤维增强混凝土为例,研究在高温和力学两种损伤源下玄武岩纤维增强混凝土的孔隙结构变化特征。发现弛豫时间在0.1~10 ms内高温损伤下玄武岩纤维增强混凝土的孔隙数量大于力学损伤下的孔隙数量,且随着温度升高,T2谱主峰向右偏移,随着荷载增加,T2谱主峰几乎不发生变化,表明温度升高更能加剧损伤,每级温度作用下新生孔径不断增大。T2谱主峰幅值和孔径分布随温度升高不断增大,随荷载增加出现先减小后增大的现象,表明高温作用对混凝土直接构成损伤,而力学作用使混凝土先密实再产生损伤,SEM观察得到了相同的结论。

     

  • 图  1  玄武岩纤维

    Figure  1.  Basalt fibers

    图  2  MesoMR23-060V-1型核磁共振仪

    Figure  2.  MesoMR23-060V-1 nuclear magnetic resonance

    图  3  高温损伤后不同玄武岩纤维增强混凝土外观形貌

    Figure  3.  Appearances and morphologies of different basalt fiber reinforced concretes after different high temperatures damaging

    P—Normal concrete; D—Short basalt fiber reinforced concrete; C—Long basalt fiber reinforced concrete

    图  4  不同温度下玄武岩纤维增强混凝土的T2图谱

    Figure  4.  T2 spectra of basalt fiber reinforced concretes at different temperatures

    图  5  不同温度下玄武岩纤维增强混凝土的孔径分布

    Figure  5.  Pore size distribution of basalt fiber reinforced concretes at different temperatures

    图  6  不同力学损伤下长玄武岩纤维增强混凝土T2图谱及孔径分布

    Figure  6.  T2 spectra and pore size distribution of long basalt fiber reinforced concrete under different mechanical damage

    图  7  长玄武岩纤维增强混凝土孔洞和裂隙经过高温作用后发展情况

    Figure  7.  Development of holes and fissures in long basalt fiber reinforced concrete after high temperatures

    图  8  长玄武岩纤维增强混凝土孔洞和裂隙经过力学损伤后发展情况

    Figure  8.  Development of holes and fissures in long basalt fiber reinforced concrete after mechanical damage

    表  1  混凝土配合比

    Table  1.   Mix proportion of concrete

    Type of concreteMaterial utilization amount/(kg·m−3)
    CementWaterSandStoneNF-FFiber
    Normal concrete 380 176 662.11 1 151.89 50
    Short basalt fiber/concrete 380 176 662.11 1 151.89 50 1.9
    Long basalt fiber/concrete 380 176 662.11 1 151.89 50 1.9
    Note: NF-F——Compound admixture.
    下载: 导出CSV

    表  2  玄武岩纤维主要性能指标

    Table  2.   Main performance indexes of basalt fibers

    Fiber length/mmMonofilament diameter/μmStretch strength/MPaDensity/(g·cm−3)Elastic modulus/GPa
    12, 24113 9002.64105
    下载: 导出CSV

    表  3  不同温度下玄武岩纤维增强混凝土的T2图谱主峰幅值和面积

    Table  3.   Main peak amplitude and area of T2 spectra of basalt fiber reinforced concretes at different temperatures

    Concrete type100℃300℃600℃900℃
    AmplitudeArea (a. u.)AmplitudeArea (a. u.)AmplitudeArea (a. u.)AmplitudeArea (a. u.)
    Normal concrete 102 179 143 324 140 312 165 493
    Short basalt fiber reinforced
    concrete
    110 172 145 313 155 350 169 535
    Long basalt fiber reinforced
    concrete
    136 153 161 253 174 370 178 566
    下载: 导出CSV

    表  4  不同温度下玄武岩纤维增强混凝土孔径分布特征

    Table  4.   Pore size distribution characteristics of basalt fiber reinforced concretes at different temperatures

    Temperature/℃Normal concrete/%Short basalt fiber reinforced concrete/%Long basalt fiber reinforced concrete/%
    MicroporesMesoporousPorosityMicroporesMesoporousPorosityMicroporesMesoporousPorosity
    100 87.4 12.6 0.48 83.7 16.3 0.57 93.9 6.1 0.71
    300 84.0 14.0 0.66 84.8 15.2 0.77 87.2 12.8 0.77
    600 83.3 16.7 0.83 82.6 17.4 1.02 81.8 18.2 1.04
    900 77.4 22.6 0.92 78.7 21.3 1.24 76.2 23.8 1.58
    下载: 导出CSV

    表  5  不同力学损伤下长玄武岩纤维增强混凝土T2图谱主峰面积

    Table  5.   Main peak area of T2 spectra of long basalt fiber reinforced concrete under different mechanical damage

    Mechanical load/MPa5101525
    Main peak area (a.u.) 124 108 114 146
    下载: 导出CSV
  • [1] 张向冈, 秦文博, 田琦, 等. 玄武岩纤维混凝土材料性能研究进展[J]. 混凝土, 2018(2):94-97. doi: 10.3969/j.issn.1002-3550.2018.02.026

    ZHANG Xianggang, QIN Wenbo, TIAN Qi, et al. Research progress of the material properties on basalt fiber reinforced concrete[J]. Concrete,2018(2):94-97(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.02.026
    [2] AYUB T, SHAFIQ N, NURUDDIN M F. Mechanical properties of high-performance concrete reinforced with basalt fibers[J]. Procedia Engineering,2014,77:131-139. doi: 10.1016/j.proeng.2014.07.029
    [3] 赵庆新, 董进秋, 潘慧敏, 等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125.

    ZHAO Qingxin, DONG Jinqiu, PAN Huimin, et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2010,27(6):120-125(in Chinese).
    [4] LUDOVICO D M, PROTA A, MANFREDA G. Structural upgrade using basalt fibers for concrete confinement[J]. Composites of Construction,2010,5(14):541-552.
    [5] RAMBO D A S, SILVA F D A, FILHO R D T, et al. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete[J]. Materials <italic>&</italic> Design,2015,65:24-33.
    [6] REN W B, XU J Y, SU H Y. Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures[J]. Fire and Materials,2016,40(5):738-755. doi: 10.1002/fam.2339
    [7] 陈炜, 何耀, 林可心, 等. 高温后玄武岩纤维高强混凝土的力学特性[J]. 硅酸盐通报, 2014, 33(5):1246-1250.

    CHEN Wei, HE Yao, LIN Kexin, et al. Mechanical properties of basalt fiber reinforced high strength concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society,2014,33(5):1246-1250(in Chinese).
    [8] 刘俊良, 许金余, 董宗戈, 等. 玄武岩纤维混凝土高温损伤的声学特性研究[J]. 混凝土, 2016(2):56-59. doi: 10.3969/j.issn.1002-3550.2016.02.014

    LIU Junliang, XU Jinyu, DONG Zongge, et al. Study on the ultrasonic properties of basalt fiber reinforced concrete after elevated temperature[J]. Concrete,2016(2):56-59(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.02.014
    [9] 许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性[J]. 建筑材料学报, 2013, 16(1):1-5. doi: 10.3969/j.issn.1007-9629.2013.01.001

    XU Jinyu, LIU Jian, LI Zhiwu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials,2013,16(1):1-5(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.01.001
    [10] 张白, 陈俊, 杨鸥, 等. 高温后混凝土质量损失及抗压强度退化规律试验[J]. 建筑结构, 2019, 49(4):76-81.

    ZHANG Bai, CHEN Jun, YANG Ou, et al. Experimental study on mass loss and compressive strength degradation law of concrete after high temperature exposure[J]. Building Structure,2019,49(4):76-81(in Chinese).
    [11] 吴波, 袁杰, 王光远. 高温后高强混凝土力学性能的试验研究[J]. 土木工程学报, 2000, 33(2):8-12, 34. doi: 10.3321/j.issn:1000-131X.2000.02.002

    WU Bo, YUAN Jie, WANG Guangyuan. Experimental research on the mechanical properties of HSC after high temperature[J]. China Civil Engineering Journal,2000,33(2):8-12, 34(in Chinese). doi: 10.3321/j.issn:1000-131X.2000.02.002
    [12] 石东升, 王安. 矿渣细骨料混凝土孔隙结构对抗压强度的影响[J]. 混凝土, 2016(3):80-83. doi: 10.3969/j.issn.1002-3550.2016.11.021

    SHI Dongsheng, WANG An. Effect of fine aggregate concrete pore structure on compressive strength[J]. Concrete,2016(3):80-83(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.021
    [13] 黄大观, 牛荻涛, 傅强, 等. 玄武岩-聚丙烯混杂纤维混凝土孔结构分析[J]. 混凝土, 2018(7):51-53. doi: 10.3969/j.issn.1002-3550.2018.07.013

    HUANG Daguan, NIU Ditao, FU Qiang, et al. Pore structure analysis of concrete with hybrid basalt-polypropylene fiber[J]. Concrete,2018(7):51-53(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.07.013
    [14] 刘子璐, 陈新明, 韩振宇, 等. 孔隙结构对玄武岩纤维混凝土力学性能的影响研究[J]. 混凝土与水泥制品, 2019(1):47-50.

    LIU Zilu, CHEN Xinming, HAN Zhenyu, et al. The influence study of pore structures on mechanical properties of basalt fiber concrete[J]. China Concrete and Cement Products,2019(1):47-50(in Chinese).
    [15] 刘倩, 申向东, 董瑞鑫, 等. 孔隙结构对风积沙混凝土抗压强度影响规律的灰熵分析[J]. 农业工程学报, 2019, 35(10):108-114. doi: 10.11975/j.issn.1002-6819.2019.10.014

    LIU Qian, SHEN Xiangdong, DONG Ruixin, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(10):108-114(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.10.014
    [16] 焦华喆, 韩振宇, 陈新明, 等. 玄武岩纤维对喷射混凝土力学性能及微观结构影响机制[J]. 复合材料学报, 2019, 36(8):1926-1934.

    JIAO Huazhe, HAN Zhenyu, CHEN Xinming, et al. Influence mechanism of basalt fiber on the toughness and microstructure of spray shotcrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1926-1934(in Chinese).
    [17] 刘倩, 申向东, 薛慧君, 等. 基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J]. 功能材料, 2017, 48(10):10066-10070.

    LIU Qian, SHEN Xiangdong, XUE Huijun, et al. Experimental study on pore characteristics of different coarse aggregate concrete based on NMR technique[J]. Journal of Functional Materials,2017,48(10):10066-10070(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [19] 周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4):731-737. doi: 10.3969/j.issn.1000-6915.2012.04.011

    ZHOU Keping, LI Jielin, XU Yujuan, et al. Experimental study on NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):731-737(in Chinese). doi: 10.3969/j.issn.1000-6915.2012.04.011
    [20] 王萧萧. 寒冷地区盐渍溶液环境下天然浮石混凝土耐久性研究[D]. 呼和浩特: 内蒙古农业大学, 2015.

    WANG Xiaoxiao. Research on the durability of natural pumice concrete in saline solution environment of cold regions[D]. Hohhot: Inner Mongolia Agricultural University, 2015(in Chinese).
    [21] 张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10):50-55.

    ZHANG Erfeng, YANG Gengshe, LIU Hui. Experimental study on meso-damage evolution of sandstone under freeze-thaw cycles[J]. Coal Engineering,2018,50(10):50-55(in Chinese).
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  370
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-02-19
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回