留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能

李刊 魏智强 乔宏霞 路承功 黄尚攀 杨博

李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J]. 复合材料学报, 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
引用本文: 李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J]. 复合材料学报, 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Microstructure and properties of polymer cement-based composites modified by nano SiO2 in early age[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002
Citation: LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Microstructure and properties of polymer cement-based composites modified by nano SiO2 in early age[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2272-2284. doi: 10.13801/j.cnki.fhclxb.20200218.002

纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能

doi: 10.13801/j.cnki.fhclxb.20200218.002
基金项目: 国家自然科学基金(51868044);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2018-20);兰州理工大学红柳一流学科建设计划
详细信息
    通讯作者:

    乔宏霞,博士,教授,博士生导师,研究方向为高性能混凝土耐久性 E-mail:Hongxia_Qiao@163.com

  • 中图分类号: TU528

Microstructure and properties of polymer cement-based composites modified by nano SiO2 in early age

  • 摘要: 利用纳米SiO2(nano SiO2)早期可促进聚合物水泥基复合材料水化速率、提升其力学性能、改善其界面过渡区(ITZ)性能及优化其孔隙结构等特点,借助XRD、SEM、EDS、显微硬度(MH)及压汞(MIP)等试验,揭示了nano SiO2对聚合物水泥基复合材料早期性能影响的微观机制。结果表明:当nano SiO2掺量为2wt%时,聚合物水泥基复合材料的力学性能最优,3 d和7 d龄期抗压强度分别为57.5 MPa和67.3 MPa,较仅仅掺加聚合物的水泥基复合材料分别提高了12.7%和13.9%;nano SiO2的掺入改变了聚合物水泥基复合材料水化产物数量及微观形貌。对于ITZ性能,nano SiO2掺入后,聚合物水泥硬化浆体-骨料的ITZ厚度减小,形貌变得更加致密;ITZ的钙硅比因nano SiO2的加入变小而其显微硬度变大;此外,nano SiO2加入后可以进一步填充聚合物水泥基复合材料更加细小的孔隙,使其凝胶孔比例变高,最可几孔径变小,大大优化了聚合物水泥基复合材料的孔隙结构。

     

  • 图  1  nano SiO2的TEM图像

    Figure  1.  TEM image of nano SiO2

    图  2  SEM及压汞(MIP)试验待测试样

    Figure  2.  Test samples of SEM and mercury intrusion porosimetry(MIP) tests

    图  3  NCM、PCM及nano SiO2/PCM复合材料的早期力学性能

    Figure  3.  Mechanical properties of NCM, PCM and nano SiO2/PCM composite in early age

    图  4  NCM、PCM及nano SiO2/PCM复合材料3 d水化产物的XRD图谱

    Figure  4.  XRD patterns of hydrate of NCM, PCM and nano SiO2/PCM composite at 3 d age

    图  5  NCM、PCM及nano SiO2/PCM复合材料3 d的SEM图像

    Figure  5.  SEM images of NCM, PCM and nano SiO2/PCM composite at 3 d age

    图  6  基准水泥净浆(NCP)、聚合物水泥净浆(PCP)及nano SiO2改性PCP(nano SiO2/PCP)复合材料硬化浆体-骨料界面过渡区(ITZ) 7 d龄期的SEM图像

    Figure  6.  SEM images of hardened cement paste-aggregate bonding ITZ of normal cementpaste(NCP), polymer cement paste(PCP) and PCP modified by nano SiO2(nano SiO2/PCP) composite at 7 d age

    图  7  NCP、PCP及nano SiO2/PCP复合材料硬化浆体-骨料ITZ的采样点分布及7 d 龄期的EDS图谱

    Figure  7.  Distribution of sampling points and EDS spectra of hardened cement paste-aggregate bonding ITZ of NCP, PCP and nano SiO2/PCP composite at 7 d age

    图  8  NCP、PCP及nano SiO2/PCP复合材料硬化浆体-骨料ITZ的钙硅原子比

    Figure  8.  Ca/Si atomic ratios of hardened cement paste-aggregate bonding ITZ of NCP, PCP and nano SiO2/PCP composite

    图  9  NCP、PCP及nano SiO2/PCP复合材料硬化浆体-骨料ITZ的7 d龄期显微硬度

    Figure  9.  Microhardness of hardened cement paste-aggregate bonding ITZ of NCP, PCP and nano SiO2/PCP composite at 7 d age

    图  10  NCP、PCP及nano SiO2/PCP复合材料硬化浆体-骨料ITZ及硬化浆体内部7 d龄期的显微硬度

    Figure  10.  Microhardness of hardened cement paste-aggregate bonding ITZ and inside hardened cement paste of NCP, PCP and nano SiO2/PCP composite at 7 d age

    图  11  NCM、PCM及nano SiO2/PCM复合材料3 d龄期孔径分布

    Figure  11.  Pore diameter distribution of NCM, PCM and nano SiO2/PCM composite at 3 d age

    图  12  NCM、PCM及nano SiO2/PCM复合材料3 d龄期的孔径微分分布曲线

    Figure  12.  Differential distribution of NCM, PCM and nano SiO2/PCM composite at 3 d age

    表  1  可再分散醋酸乙烯/乙烯共聚(VAE)胶粉基本性能

    Table  1.   Basic properties of redispersible vinyl acetate/ ethylene(VAE) copolymer latex powder

    PerformanceIndex
    Solid content/% 99±1
    Apparent density/(g·L−1) 540±50
    Appearance White powder
    Steady state material Poval
    Film-forming temperature/℃ 4
    Particle size/μm 0.5–8
    下载: 导出CSV

    表  2  纳米SiO2(nano SiO2)基本性能

    Table  2.   Basic properties of nano SiO2

    SiO2/%AppearanceAverage
    size/nm
    Specific surface
    area/(m2·g−1)
    ≥99.5White powder20±5250±30
    下载: 导出CSV

    表  3  基准水泥砂浆(NCM)、聚合物水泥砂浆(PCM)及nano SiO2改性PCM(nano SiO2/PCM)复合材料配合比

    Table  3.   Mix proportions of normal cement mortar(NCM), polymer cement mortar(PCM) and PCM modified by nano SiO2(nano SiO2/PCM) composite

    SampleCement/gWater/gSand/gFly ash/gnano SiO2/wt%VAE/wt%Water reducer/wt%Defoamer/wt%Fluidity/mm
    NCM 720 240 1 200 80 0 0 0.20 0 160
    PCM 720 240 1 200 80 0 4 0.15 0.1 180
    nano SiO2/PCM 704 240 1 200 80 2 4 0.45 0.1 160
    下载: 导出CSV

    表  4  NCM、PCM及nano SiO2/PCM复合材料3 d龄期的孔结构参数

    Table  4.   Pore structure parameters of NCM, PCM and nano SiO2/PCM composite at 3 d age

    SamplePorosity/%Total pore area/(m2·g−1)Average pore diameter/nmMedian pore diameter/nm
    NCM 19.2 19.7 19.8 31.1
    PCM 21.0 25.7 17.9 18.3
    nano SiO2/PCM 20.2 28.3 15.5 17.9
    下载: 导出CSV
  • [1] 王培铭, 赵国荣, 张国防, 等. 聚合物水泥混凝土的微观结构的研究进展[J]. 硅酸盐学报, 2014, 42(5):653-660. doi: 10.7521/j.issn.0454-5648.2014.05.16

    WANG P M, ZHAO G R, ZAHNG G F, et al. Research progress on microstructure of polymer cement concrete[J]. Journal of the Chinese Ceramic Society,2014,42(5):653-660(in Chinese). doi: 10.7521/j.issn.0454-5648.2014.05.16
    [2] 王培铭, 刘恩贵. 苯丙共聚乳胶粉水泥砂浆的性能研究[J]. 建筑材料学报, 2009, 12(3):253-258, 265. doi: 10.3969/j.issn.1007-9629.2009.03.001

    WANG P M, LIU E G. Study on properties of styrene-acrylate copolymer powder modified cement mortar[J]. Journal of Building Materials,2009,12(3):253-258, 265(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.03.001
    [3] 劳有盛, 张磊, 王雪平, 等. 纳米颗粒对水泥基材料性能影响的研究进展[J]. 材料导报, 2014, 28(3):93-96.

    LAO Y S, ZHANG L, WANG X P, et al. Research progress in effect of nanoparticles on the performance of cement-based materials[J]. Materials Review,2014,28(3):93-96(in Chinese).
    [4] 徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J]. 硅酸盐学报, 2018, 46(8):1053-1058.

    XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling[J]. Journal of the Chinese Ceramic Society,2018,46(8):1053-1058(in Chinese).
    [5] 朱靖塞, 许金余, 白二雷, 等. 纳米材料对混凝土动态力学性能的影响[J]. 复合材料学报, 2016, 33(3):597-605.

    ZHU J S, XU J Y, BAI E L, et al. Effects of composite nanomaterials on dynamic mechanical properties of concretes[J]. Acta Materiae Compositae Sinica,2016,33(3):597-605(in Chinese).
    [6] 徐晶, 王彬彬, 赵思晨. 纳米改性混凝土界面过渡区的多尺度表征[J]. 建筑材料学报, 2017, 20(1):7-11. doi: 10.3969/j.issn.1007-9629.2017.01.002

    XU J, WANG B B, ZHAO S C. Multi-scale characterization of interfacial transition zone in nano-modified concrete[J]. Journal of Building Materials,2017,20(1):7-11(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.01.002
    [7] SUN J F, XU Z Q, LI W F, et al. Effect of nano-SiO<sub>2</sub> on the early hydration of alite-ulphoaluminate cement[J]. Nanomaterials,2017,7(5):102. doi: 10.3390/nano7050102
    [8] WANG L G, ZHENG D P, ZHANG S P, et al. Effect of nano-SiO<sub>2</sub> on the hydration and microstructure of portland cement[J]. Nanomaterials,2016,6(12):241. doi: 10.3390/nano6120241
    [9] BEIGI M H, BERENJIAN J, OMRAN O L, et al. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete[J]. Materials <italic>&</italic> Design,2013,50:1019-1029.
    [10] RONG Z, JIANG G, SUN W. Effects of nano-SiO<sub>2</sub> and nano-CaCO<sub>3</sub> on properties of ultra-high performance cementitious composites[J]. Journal of Southeast University,2015,45(2):393-398.
    [11] 杨潮军. 纳米改性聚合物水泥基材料的性能和修复试验研究[D]. 杭州: 浙江大学, 2016.

    YANG C J. Research on properties and repair test of nano-modified polymer cementitious material[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [12] 王茹, 张绍康, 王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 材料导报, 2017, 31(24):69-73, 95. doi: 10.11896/j.issn.1005-023X.2017.024.014

    WANG R, ZHANG S K, WANG G Y. Influence and mechanism of mineral admixture on setting and hardening of styrene-butadiene copolymer/cement composite cementitious material[J]. Materials Review,2017,31(24):69-73, 95(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.014
    [13] 国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality Technical Supervision. Method of testing cements: Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [14] 张秀芝, 刘明乐, 杜笑寒, 等. 纳米SiO<sub>2</sub>与粉煤灰协同改性水泥基材料性能研究[J]. 材料导报, 2017, 31(24):50-55, 62. doi: 10.11896/j.issn.1005-023X.2017.024.011

    ZHANG X Z, LIU M L, DU X H, et al. Synergistic effect of nano silica and fly ash on the cement-based materials[J]. Materials Review,2017,31(24):50-55, 62(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.011
    [15] SILVA D A, MONTEIRO P J M. Hydration evolution of C<sub>3</sub>S-EVA composites analyzed by soft X-ray microscopy[J]. Cement and Concrete Research,2005,35(2):351-357. doi: 10.1016/j.cemconres.2004.05.049
    [16] WANG M, WANG R, ZHENG S, et al. Research on the chemical mechanism in the polyacrylate latex modified cement system[J]. Cement and Concrete Research,2015,76:62-69. doi: 10.1016/j.cemconres.2015.05.008
    [17] TOROPOVS N, BAJARE D, SAHMENKO G, et al. The formation of microstructure in high strength concrete containing micro and nanosilica[J]. Key Engineering Materials,2014,604:83-86. doi: 10.4028/www.scientific.net/KEM.604.83
    [18] LIU M, TAN H, HE X. Effects of nano-SiO<sub>2</sub> on early strength and microstructure of steam-cured high volume fly ash cement system[J]. Construction and Building Materials,2019,194:350-359. doi: 10.1016/j.conbuildmat.2018.10.214
    [19] 董淑慧, 张宝生, 葛勇, 等. 轻骨料-水泥石界面区微观结构特征[J]. 建筑材料学报, 2009, 12(6):737-741. doi: 10.3969/j.issn.1007-9629.2009.06.023

    DONG S H, ZHANG B S, GE Y, et al. Microstructure characteristics of interfacial transition zone(ITZ) between lightweight aggregate and cement paste[J]. Journal of Building Materials,2009,12(6):737-741(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.06.023
    [20] 石妍, 杨华全, 陈霞, 等. 骨料种类对混凝土孔结构及微观界面的影响[J]. 建筑材料学报, 2015, 18(1):133-138. doi: 10.3969/j.issn.1007-9629.2015.01.024

    SHI Y, YANG H Q, CHEN X, et al. Influence of aggregate variety on pore structure and microscopic interface of concrete[J]. Journal of Building Materials,2015,18(1):133-138(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.01.024
    [21] 董芸, 杨华全, 张亮, 等. 骨料界面特性对混凝土力学性能的影响[J]. 建筑材料学报, 2014, 17(4):598-605. doi: 10.3969/j.issn.1007-9629.2014.04.007

    DONG Y, YANG H Q, ZHANG L, et al. Effect of aggregate interface characteristics on the mechanical property of concrete[J]. Journal of Building Materials,2014,17(4):598-605(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.04.007
    [22] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8):1348-1353.

    XUE C Z, SHEN A Q, GUO Y C. Prediction model for the compressive strength of concrete mixed with CWCPM based on pore structure parameters[J]. Materials Review,2019,33(8):1348-1353(in Chinese).
    [23] 郭晓潞, 宋猛. 蒸压加气混凝土的孔结构及表征方法研究进展[J]. 材料导报, 2018, 32(s2):440-445.

    GUO X L, SONG M. Development on pore structure and characterization of autoclaved aerated concrete[J]. Materials Review,2018,32(s2):440-445(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1208
  • HTML全文浏览量:  421
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-02-19
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回