留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多粒径TiB2/Cu复合材料耐电弧侵蚀行为

国秀花 林焕然 宋克兴 王旭 张祥峰 冯江

国秀花, 林焕然, 宋克兴, 等. 多粒径TiB2/Cu复合材料耐电弧侵蚀行为[J]. 复合材料学报, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001
引用本文: 国秀花, 林焕然, 宋克兴, 等. 多粒径TiB2/Cu复合材料耐电弧侵蚀行为[J]. 复合材料学报, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001
GUO Xiuhua, LIN Huanran, SONG Kexing, et al. Arc erosion behavior of multi-particle TiB2/Cu composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001
Citation: GUO Xiuhua, LIN Huanran, SONG Kexing, et al. Arc erosion behavior of multi-particle TiB2/Cu composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001

多粒径TiB2/Cu复合材料耐电弧侵蚀行为

doi: 10.13801/j.cnki.fhclxb.20200217.001
基金项目: 国家自然科学基金(51605146; U1502274); 河南省高等学校青年骨干教师培养计划项目(2018GGJS045); 中国博士后基金(2018M632769); 河南省杰出人才创新基金(182101510003)
详细信息
    通讯作者:

    宋克兴,男,教授,博导,研究方向为高性能铜合金及先进制备加工技术 E-mail:kxsong@haust.edu.cn

  • 中图分类号: TB331; TG146.1+1

Arc erosion behavior of multi-particle TiB2/Cu composite

  • 摘要: 采用粉末冶金工艺制备了不同配比的多粒径(2 μm+10 μm+50 μm) TiB2/Cu复合材料。通过JF04C触点材料测试系统对多粒径TiB2/Cu复合材料进行耐电弧侵蚀性能试验,研究(2 μm+10 μm+50 μm) TiB2颗粒质量比分别为1∶1∶1、1∶1∶3、1∶3∶1、3∶1∶1时,TiB2/Cu复合材料的耐电弧侵蚀性能及电弧侵蚀形貌变化规律,探究多粒径配比对TiB2/Cu复合材料表层耐电弧侵蚀行为的影响。结果表明:当(2 μm+10 μm+50 μm) TiB2颗粒质量比为1∶1∶1时,TiB2/Cu复合材料相对密度和导电率最高,分别为99.1%和87.1%IACS。当(2 μm+10 μm+50 μm) TiB2颗粒质量比为1∶1∶1和1∶3∶1时,TiB2/Cu复合材料的组织均匀性较好,电弧侵蚀后材料损失相同,材料转移量最少。其中,质量比为1∶3∶1时,TiB2/Cu复合材料平均燃弧能量最低,且燃弧时间和燃弧能量最稳定。研究表明,这与复合材料的综合物理性能密切相关。在颗粒增强Cu基复合材料设计过程中,引入合适配比的多粒径TiB2颗粒有助于提高TiB2/Cu复合材料的密度、导电率等综合物理性能。电弧侵蚀过程中,不同粒径的TiB2颗粒相互协同作用,有助于提高TiB2/Cu复合材料的耐电弧侵蚀性能和服役稳定性。

     

  • 图  1  纯Cu粉和TiB2颗粒粉末的原始微观形貌

    Figure  1.  Morphologies of pure Cu powder and TiB2 particle powders

    图  2  JF04C触点材料测试系统

    Figure  2.  JF04C contact material testing system

    图  3  多粒径TiB2/Cu复合材料的显微组织

    Figure  3.  Microstructures of TiB2/Cu composites with multi-particle sizes

    图  4  24 V、15 A条件下多粒径不同质量比TiB2/Cu复合材料燃弧时间(a)和燃弧能量(b)与接触次数的关系曲线

    Figure  4.  Relation curves of arc time (a) and arc energy (b) and contact times of TiB2/Cu composites with different particle sizes and mass ratios under 24 V and 15 A condition

    图  5  不同质量比TiB2颗粒平均燃弧时间、平均燃弧能量与接触压力的关系

    Figure  5.  Relationship between average arc time, average arc energy and contact pressure of TiB2 particles with different particle mass ratios

    图  6  不同质量比TiB2/Cu复合材料电蚀后阳极、阴极及总的质量变化

    Figure  6.  Anode, cathode and total mass change of TiB2/Cu composites with different mass ratios after arc erosion

    图  7  不同质量比TiB2/Cu复合材料在24 V、15 A条件下电弧侵蚀形貌

    Figure  7.  Arc erosion morphologies of TiB2/Cu composites with different mass ratios at 24 V and 15 A

    图  8  (2 μm+10 μm+50 μm)TiB2/Cu复合材料质量比为1∶1∶3时在24 V、15 A条件下电弧侵蚀形貌

    Figure  8.  Arc erosion morphologies of (2 μm+10 μm+50 μm) TiB2/Cu composites with mass ratio of 1∶1∶3 at 24 V and 15 A

    表  1  纯Cu与多粒径TiB2/Cu复合材料的综合性能

    Table  1.   Comprehensive properties of pure Cu and multi-particle TiB2/Cu composites

    Particle size of TiB2/μmRelative density/%Electrical conductivity/%IACSHardness/HBW
    2+10+50(1∶1∶1) 99.1 87.1±1.2 67.8±0.4
    2+10+50(1∶3∶1) 98.4 84.7±1.5 69.2±1.2
    2+10+50(1∶1∶3) 98.2 83.9±1.7 72.0±0.6
    2+10+50(3∶1∶1) 97.9 83.2±0.8 66.8±0.4
    Cu 99.5 96.6±0.6 55.7±0.4
    下载: 导出CSV
  • [1] GUO Xiuhua, ZHOU Yanjun, SONG Kexing, et al. Microstructure and properties of Cu-Mg alloy treated by internal oxidation[J]. Materials Science and Technology,2018,34(6):648-653. doi: 10.1080/02670836.2017.1410354
    [2] BAGHERI G A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. Journal of Alloys and Compounds,2016,676:120-126. doi: 10.1016/j.jallcom.2016.03.085
    [3] 陆东梅, 杨瑞霞, 王清周. 掺杂纳米SnO2-Al2O3/Cu新型电触头复合材料的制备及耐磨性能[J]. 复合材料学报, 2016, 33(12):2815-2823.

    LU Dongmei, YANG Ruixia, WANG Qingzhou. Fabrication and wear resistances of doped nano-SnO2-Al2O3/Cu novel electrical contact composites[J]. Acta Materiea Compo-site Sinica,2016,33(12):2815-2823(in Chinese).
    [4] ZHANG Xiaohui, ZHANG Yi, TIAN Baohong, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts[J]. Composites Part A: Applied Science & Manufacturing,2019,160(3):110-118.
    [5] ZHU S, LIU Yong, TIAN B, et al. Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material[J]. Vacuum,2017,143:129-137. doi: 10.1016/j.vacuum.2017.06.002
    [6] GUO Xiuhua, SONG Kexing, LIANG Shuhua, et al. Relationship between the MgOp/Cu interfacial bonding state and the arc erosion resistance of MgO/Cu composites[J]. Journal of Materials Research,2017,32(19):3753-3760. doi: 10.1557/jmr.2017.321
    [7] JIANG Y H, LI D, LIANG S H, et al. Phase selection of titanium boride in copper matrix composites during solidification[J]. Journal of Materials Science,2017,52(5):2957-2963. doi: 10.1007/s10853-016-0592-2
    [8] ZOU C L, KANG H J, WANG W, et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. Journal of Alloys and Compounds,2016,687:312-319. doi: 10.1016/j.jallcom.2016.06.129
    [9] YU Z L, ZHU H G, HUANG J W, et al. Processing and characterization of in-situ ultrafine TiB2-Cu composites from Ti-B-Cu system[J]. Powder Technology,2017,320:66-72. doi: 10.1016/j.powtec.2017.07.036
    [10] KUMAR M, GUPTA G K, MODI O P, et al. Effect of separate and combined milling of Cu and TiB2 powders on the electrical and mechanical properties of Cu-TiB2 composites[J]. Canadian Metallurgical Quarterly,2016,56(1):58-66.
    [11] GUO X, SONG K, LING S, et al. Effect of Al2O3 particle size on electrical wear performance of Al2O3/Cu compo-sites[J]. Tribology Transactions,2016,59(1):170-177. doi: 10.1080/10402004.2015.1061079
    [12] ĎURIŠINOVÁ K, ĎURIŠIN J, OROLÍNOVÁ M, et al. Effect of mechanical milling on nanocrystalline grain stability and properties of Cu-Al2O3 composite prepared by thermo-chemical technique and hot extrusion[J]. Journal of Alloys and Compounds,2015,618:204-209. doi: 10.1016/j.jallcom.2014.08.177
    [13] 庄伟彬, 宗亚平, 张跃波. 铁基复合材料碳化硅粒子混合尺寸增强作用机理[J]. 材料科学与工程学报, 2013(1):1-5.

    ZHUANG Weibin, ZONG Yaping, ZHANG Yuebo. Mechanism of SiC particle mixing size enhancement in iron matrix composites[J]. Journal of Materials Science and Engineering,2013(1):1-5(in Chinese).
    [14] 贺鹏. HPT法制备多粒径SiCp/Al基复合材料及组织性能研究[D]. 合肥: 合肥工业大学, 2015.

    HE Peng. Preparation and microstructure and properties of SiCp/Al matrix composites with multi-particle SiCp/Al by HPT[D]. Hefei: Hefei University of Technology, 2015(in Chinese).
    [15] BINDUMADHAVAN P N , WAH H K , PRABHAKAR O. Dual particle size (DPS) composites: Effect on wear and mechanical properties of particulate metal matrix composites[J]. Wear,2001,248(1-2):112-120. doi: 10.1016/S0043-1648(00)00546-9
    [16] ZOU C, CHEN Z, GUO E, et al. A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance[J]. RSC Advances,2018,8(54):30777-30782. doi: 10.1039/C8RA06020G
    [17] MIN Z, GAOHUI W, ZUOYONG D, et al. TiB2P/Al compo-site fabricated by squeeze casting technology[J]. Materials Science and Engineering: A,2004,374(1-2):303-306. doi: 10.1016/j.msea.2004.03.003
    [18] WU N, XUE F, YANG H, et al. Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites[J]. Ceramics International,2019,45(1):1370-1378. doi: 10.1016/j.ceramint.2018.08.270
    [19] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料制备与载流摩擦磨损的特性[J]. 复合材料学报, 2019, 36(10):93-101.

    ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):93-101(in Chinese).
    [20] MALEQUE A, KARIM R. Tribological behavior of dual and triple particle size SiC reinforced Al-MMCs: A comparative study[J]. Industrial Lubrication and Tribology,2008,60(4):189-194. doi: 10.1108/00368790810881533
    [21] DINAHARAN I, SARAVANAKUMAR S, KALAISELVAN K, et al. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing[J]. Journal of Asian Ceramic Societies,2018,5(3):295-303.
    [22] XI Y, WANG X H, ZHOU Z J, et al. Material transfer behavior of AgTiB2 contact under different contact forces and electrode gaps[J]. Transactions of Nonferrous Metals Society of China,2019,29(5):1046-1056. doi: 10.1016/S1003-6326(19)65013-2
    [23] 李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.

    LI Guohui, LIU Yong, GUO Xiuhua, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Meteriae Composite Sinica,2018,35(3):616-622(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  214
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-02-18
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回