留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能

段瑛涛 武肖鹏 王智文 敬敏 栗娜 刘强 宁慧铭 胡宁

段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002
引用本文: 段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002
DUAN Yingtao, WU Xiaopeng, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002
Citation: DUAN Yingtao, WU Xiaopeng, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002

碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能

doi: 10.13801/j.cnki.fhclxb.20200215.002
基金项目: 国家自然科学基金汽车联合重点基金(U1864208);国家自然科学基金(51603022)
详细信息
    通讯作者:

    宁慧铭,博士,副教授,硕士生导师,研究方向为复合材料力学 E-mail:ninghuiming@cqu.edu.cn

  • 中图分类号: TB332

Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates

  • 摘要: 通过双悬臂梁试验(DCB)研究了金属表面处理和界面插层协同作用对碳纤维增强树脂复合材料(CFRP)-热成型钢超混杂层合板层间力学性能的影响。试验结果表明,采用金属表面处理与界面插层协同增韧方案,可以极大地提升层合板的I型层间断裂韧性。其中,喷砂/界面胶膜插层试件(GB36#/AF)的I型层间断裂韧性相比于脱脂试件提高了343%;喷砂/界面纯树脂插层试件(GB36#/EP)相比于脱脂试件,其Ⅰ型层间断裂韧性提高了129%。并基于内聚区模型对CFRP-热成型钢超混杂层合板分层失效进行了有限元模拟。最后借助激光共聚焦扫描显微镜(LSM)、接触角测量仪(CAG)、扫描电子显微镜(SEM)等对热成型钢表面形貌和试件的断裂面进行了表征并揭示了层间增韧的机制。

     

  • 图  1  CFRP-热成型钢超混杂层合板制备流程示意图及热压工艺

    Figure  1.  Schematic illustration of CFRP-thermoformed steel super-hybrid laminates fabrication and hot pressing process

    图  2  双悬臂梁试验(DCB)试件示意图(预制裂纹位于钢板与插层之间)

    Figure  2.  Schematic illustration of specimen for double cantilever beam(DCB) tests (Precrack lies between the steel plate and interlayer)

    图  3  CFRP-热成型钢超混杂层合板DCB试样的载荷-位移曲线

    Figure  3.  Representative load-displacement curves of DCB for CFRP-thermoformed steel super-hybrid laminates

    图  4  CFRP-热成型钢超混杂层合板DCB试样的临界载荷${P_{\rm{C}}}$

    Figure  4.  Critical load ${P_{\rm{C}}}$ of DCB for CFRP-thermoformed steel super-hybrid laminates

    图  5  CFRP-热成型钢超混杂层合板DCB试样应变能释放率与裂纹扩展增量的阻力曲线

    Figure  5.  Resistance curves of energy release rate-crack increment of DCB for CFRP-thermoformed steel super-hybrid laminates

    图  6  CFRP-热成型钢超混杂层合板I型断裂韧性 ${G_{{\rm IC}}}$和断裂阻抗${G_{{\rm IR}}}$对比

    Figure  6.  Comparison of Mode-I fracture toughness ${G_{{\rm IC}}}$ and resistance ${G_{{\rm IR}}}$ for CFRP-thermoformed steel super-hybrid laminates

    图  7  CFRP-热成型钢超混杂层合板DCB实验有限元仿真模型与结果

    Figure  7.  Finite element model and simulation results of CFRP-thermoformed steel super-hybrid laminates for DCB tests

    FEA—Finite element analysis

    图  8  不同表面处理方式下钢板表面的微观形貌

    Figure  8.  Microstructures of steel surfaces treated with different methods

    图  9  钢板表面的粗糙度轮廓

    Figure  9.  Surface roughness profiles of the surface treated steel

    图  10  钢板表面的接触角

    Figure  10.  Contact angles of the treated steel surfaces

    图  11  CFRP-热成型钢超混杂层合板I型层间断裂形貌

    Figure  11.  Morphologies of the fracture surface of CFRP-thermoformed steel super-hybrid laminates after Mode-I tests

    图  12  CFRP-热成型钢超混杂层合板I型加载下裂纹扩展行为示意图

    Figure  12.  Schematic explanation of crack growth behavior of CFRP-thermoformed steel super-hybrid laminates under Mode-I loading

    表  1  碳纤维增强树脂复合材料(CFRP)及插层(L-F501胶膜和树脂)的物理参数

    Table  1.   Physical parameters of carbon fiber reinforced plastics(CFRP) composite and interlayer (L-F501 and epoxy)

    MaterialPhysical parameterValue
    CFRPYoung’s modulus (Fiber direction)/GPa138
    Young’s modulus (Transverse direction)/GPa10
    Tensile strength (Fiber direction)/MPa1 800
    Class fiber volume fraction/vol%67
    L-F501Young’s modulus/GPa3.6
    Tensile strength/MPa40
    Steel-to-steel joint (Untreated)/MPa28
    EpoxyYoung’s modulus/GPa3
    Tensile strength/MPa60
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Experimental schemes

    GroupScheme nameAbbreviation scheme
    1DegreasingDegreasing
    2600# sandpaper grinding600#
    3SandblastingGB36#
    4Degreasing/adhesive film interleavesDegreasing/AF
    5Sandblasting/adhesive film interleavesGB36#/AF
    6Sandblasting/epoxy resin interleavesGB36#/EP
    下载: 导出CSV
  • [1] SINMAZÇELIK T, AVCU E, BORA M Ö, et al. A review: Fiber metal laminates, background, bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685.
    [2] 胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699.

    HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699(in Chinese).
    [3] 董大龙, 周翔, 汪海, 等. 分层对复合材料机械连接结构承载能力的影响[J]. 复合材料学报, 2018, 35(1):61-69.

    DONG D L, ZHOU X, WANG H, et al. Bearing capacity of composite mechanical joint with hole delamination[J]. Acta Materiae Compositae Sinica,2018,35(1):61-69(in Chinese).
    [4] 吴素君, 解晓伟, 晋会锦, 等. 纤维金属层板力学性能的研究现状[J]. 复合材料学报, 2018, 35(4):733-747.

    WU S J, XIE X W, JIN H J, et al. Mechanical properties of fiber metal laminates: A review[J]. Acta Materiae Compo-site Sinica,2018,35(4):733-747(in Chinese).
    [5] SUN Z, JEYARAMAN J, SUN S, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacturing,2012,43(11):2059-2064. doi: 10.1016/j.compositesa.2012.06.002
    [6] SUN Z, HU X, SUN S, et al. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement[J]. Composites Science and Technology,2013,77:14-21. doi: 10.1016/j.compscitech.2013.01.016
    [7] WANG L, LIU W, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2014,67:270-279. doi: 10.1016/j.compositesb.2014.07.003
    [8] 邓江东, 宗周红, 黄培彦. FRP-混凝土界面疲劳性能分析[J]. 复合材料学报, 2010, 27(1):155-161.

    DENG J D, ZONG Z H, HUANG P Y. Analysis of FRP-concrete interfacial fatigue properties[J]. Acta Materiae Compositae Sinica,2010,27(1):155-161(in Chinese).
    [9] 韩奇钢, 孙延标, 杨文珂, 等. 纤维/金属层状复合材料的研究及应用进展[J]. 精密成形工程, 2019, 11(1):17-24. doi: 10.3969/j.issn.1674-6457.2019.01.003

    HAN Q G, SUN Y B, YANG W K, et al. The development in research and application of fiber metal laminated compo-sites[J]. Journal of Netshape Forming Engineering,2019,11(1):17-24(in Chinese). doi: 10.3969/j.issn.1674-6457.2019.01.003
    [10] SHI S, SUN Z, REN M, et al. Buckling response of advanced grid stiffened carbon-fiber composite cylindrical shells with reinforced cutouts[J]. Composites Part B: Engineering,2013,44(1):26-33. doi: 10.1016/j.compositesb.2012.07.044
    [11] RIZKALLA S, DAWOOD M, SCHNERCH D. Development of a carbon fiber reinforced polymer system for strengthening steel structures[J]. Composites Part A: Applied Science and Manufacturing,2008,39(2):388-397. doi: 10.1016/j.compositesa.2007.10.009
    [12] LEE B E, PARK E T, KIM J, et al. Analytical evaluation on uniaxial tensile deformation behavior of fiber metal laminate based on SRPP and its experimental confirmation[J]. Composites Part B: Engineering,2014,67:154-159. doi: 10.1016/j.compositesb.2014.06.031
    [13] GUO S J, YANG Q S, HE X Q, et al. Modeling of interface cracking in copper-graphite composites by MD and CFE method[J]. Composites Part B: Engineering,2014,58:586-592. doi: 10.1016/j.compositesb.2013.10.042
    [14] FIORE V, ALAGNA F, DI BELLA G, et al. On the mechanical behavior of BFRP to aluminum AA6086 mixed joints[J]. Composites Part B: Engineering,2013,48:79-87. doi: 10.1016/j.compositesb.2012.12.009
    [15] SHI S, SUN Z, REN M, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Compo-sites Part B: Engineering,2013,45(1):888-896. doi: 10.1016/j.compositesb.2012.09.052
    [16] WANG L, LIU W, HUI D. Compression strength of hollow sandwich columns with GFRP skins and a paulownia wood core[J]. Composites Part B: Engineering,2014,60:495-506. doi: 10.1016/j.compositesb.2014.01.013
    [17] 邓本波, 鲁后国, 唐程光. 汽车热压成型板研究与应用[J]. 汽车技术, 2012(12):62-64. doi: 10.3969/j.issn.1000-3703.2012.12.014

    DENG B B, LU H G, TANG C G. Research and application on hot-press forming panel for vehicle[J]. Automobile Technology,2012(12):62-64(in Chinese). doi: 10.3969/j.issn.1000-3703.2012.12.014
    [18] 王明建, 夏申琳, 潘恒沛. 汽车轻量化技术现状及展望[J]. 汽车工艺师, 2016(7):56-59. doi: 10.3969/j.issn.1672-657X.2016.07.022

    WANG J M, XIA S L, PAN H P. The status and prospects of automobile lightweight technology[J]. Automobile Technology,2016(7):56-59(in Chinese). doi: 10.3969/j.issn.1672-657X.2016.07.022
    [19] BOUTAR Y, NAÏMI S, MEZLINI S, et al. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives,2016,67:38-43. doi: 10.1016/j.ijadhadh.2015.12.023
    [20] ALFANO M, LUBINEAU G, FURGIUELE F, et al. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints[J]. International Journal of Adhesion and Adhesives,2012,39:33-41. doi: 10.1016/j.ijadhadh.2012.03.002
    [21] PANTOJA M, ABENOJAR J, MARTÍNEZ M A, et al. Silane pretreatment of electrogalvanized steels: Effect on adhesive properties[J]. International Journal of Adhesion and Adhesives,2016,65:54-62. doi: 10.1016/j.ijadhadh.2015.11.006
    [22] 徐飞, 潘蕾, 白云瑞, 等. 钛表面阳极氧化处理对TA2/聚醚醚酮(PEEK)粘结性能的影响[J]. 航空学报, 2014, 35(6):1724-1732.

    XU F, PAN L, BAI Y R, et al. Effects of Titanium surface anodization on adhesive bonding properties of TA2/polyetheretherketone(PEEK)[J]. Acta Aeronautica et Astronautica Sinica,2014,35(6):1724-1732(in Chinese).
    [23] 高志强, 仲伟虹, 杨鸿昌, 等. Ti表面处理及其对层间混杂复合材料Ti/CFRP性能影响[J]. 复合材料学报, 2001(3):26-29. doi: 10.3321/j.issn:1000-3851.2001.03.007

    GAO Z Q, ZHONG W H, YANG H C, et al. Surface activation methods of Ti and the effects on Ti/CFRP hybrid compo-site[J]. Acta Materiae Compositae Sinica,2001(3):26-29(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.03.007
    [24] WANG X, LIN J, MIN J, et al. Effect of atmospheric pressure plasma treatment on strength of adhesive-bonded aluminum AA5052[J]. The Journal of Adhesion,2018,94(9):701-722. doi: 10.1080/00218464.2017.1393747
    [25] NING H, LI Y, LI J, et al. Toughening effect of CB-epoxy interleaf on the inter-laminar mechanical properties of CFRP laminates[J]. Composites Part A: Applied Science and Manufacturing,2015,68:226-234. doi: 10.1016/j.compositesa.2014.09.030
    [26] NING H, LI J, HU N, et al. Inter-laminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf[J]. Carbon,2015,91:224-233. doi: 10.1016/j.carbon.2015.04.054
    [27] HOJO M, ANDO T, TANAKA M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue,2006,28(10):1154-1165. doi: 10.1016/j.ijfatigue.2006.02.004
    [28] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fiber textile composites[J]. Composites Part A: Applied Science and Manufacturing,1999,30(12):1445-1461. doi: 10.1016/S1359-835X(99)00034-2
    [29] BYRD L W, BIRMAN V. Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test[J]. Composites Part B: Engineering,2006,37(4-5):365-378. doi: 10.1016/j.compositesb.2005.05.019
    [30] Japanese Standards Association. Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics: JIS K 7086: 1993[S]. Japan: Japanese Standards Association, 1993.
    [31] HUA X, LI H, LU Y, et al. Interlaminar fracture toughness of GLARE laminates based on asymmetric double cantilever beam (ADCB)[J]. Composites Part B: Engineering,2019,163:175-184. doi: 10.1016/j.compositesb.2018.11.040
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  574
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2020-01-20
  • 网络出版日期:  2020-02-17
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回