留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声强制浸润法制备碳纳米纸/聚合物导热复合材料

任兴国 孙靖尧 赵中里 黄尧 刘颖 吴大鸣

任兴国, 孙靖尧, 赵中里, 等. 超声强制浸润法制备碳纳米纸/聚合物导热复合材料[J]. 复合材料学报, 2020, 37(8): 1841-1849. doi: 10.13801/j.cnki.fhclxb.20200214.001
引用本文: 任兴国, 孙靖尧, 赵中里, 等. 超声强制浸润法制备碳纳米纸/聚合物导热复合材料[J]. 复合材料学报, 2020, 37(8): 1841-1849. doi: 10.13801/j.cnki.fhclxb.20200214.001
REN Xingguo, SUN Jingyao, ZHAO Zhongli, et al. Preparation of carbon nanopapers/polymer thermal conductive composite by ultrasonic forced infiltration[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1841-1849. doi: 10.13801/j.cnki.fhclxb.20200214.001
Citation: REN Xingguo, SUN Jingyao, ZHAO Zhongli, et al. Preparation of carbon nanopapers/polymer thermal conductive composite by ultrasonic forced infiltration[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1841-1849. doi: 10.13801/j.cnki.fhclxb.20200214.001

超声强制浸润法制备碳纳米纸/聚合物导热复合材料

doi: 10.13801/j.cnki.fhclxb.20200214.001
基金项目: 国家自然科学基金(51673020);北京市自然科学基金(2204090)
详细信息
    通讯作者:

    孙靖尧,博士,副教授,研究方向为聚合物先进制造 E-mail:sunjingyao@mail.buct.edu.cn

  • 中图分类号: TB332

Preparation of carbon nanopapers/polymer thermal conductive composite by ultrasonic forced infiltration

  • 摘要: 为实现聚合物基导热复合材料的高效制备,提出了一种利用超声焊接设备实施的超声强制浸润方法。采用真空抽滤方法制备出由碳纳米管(Carbon nanotubes, CNTs)堆叠而成的碳纳米纸(Carbon nanopapers, CNPs), 将CNPs放置在未固化的聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)中,利用超声焊接设备的高频率、高功率超声源进行震荡,凭借超声波的能量传递作用,使液态PDMS逐步浸润到CNPs中。在100℃加热30 min固化后,即得到兼具高柔性和优良导热性能的CNPs/PDMS复合材料。结果表明,相同振幅条件下,CNPs/PDMS复合材料的导热性能随超声处理时长的增加而先上升后下降,并在超声时长为1.9 s时达到最优,热导率达5.781 W/(m·K)。验证了超声强制浸润法高效的制备柔性导热复合材料的可行性。

     

  • 图  1  超声强制浸润方法制备碳纳米纸/聚二甲基硅氧烷(CNPs/PDMS)复合材料的工艺流程图

    Figure  1.  Process flow chart of preparing carbon nanopapers/polydimethylsiloxane(CNPs/PDMS) composite by ultrasonic forced infiltration method

    图  2  自制红外热成像测试平台

    Figure  2.  Homemade infrared thermal imaging test platform

    图  3  不同超声处理时间的CNPs/PDMS导热复合材料断面SEM图像

    Figure  3.  SEM images of CNPs/PDMS thermally conductive composites with different sonication times

    图  4  CNTs/PDMS导热复合材料热导率与超声处理时间关系

    Figure  4.  Relationship between thermal conductivity of CNTs/PDMS thermal conductive composites and time of ultrasonic treatment

    图  5  不同超声处理时间的CNPs/PDMS导热复合材料的热红外成像

    Figure  5.  Thermal infrared imaging of CNPs /PDMS thermally conductive composites with different sonication times

    图  6  不同超声处理时间的CNPs/PDMS导热复合材料的温度分布曲线

    Figure  6.  Temperature distribution curves of CNPs/PDMS thermally conductive composites with different sonication times

    图  7  CNPs/PDMS导热复合材料经0°(a)、90°(b)、180°(c)和360°(d)旋转

    Figure  7.  CNPs/PDMS thermal conductive composites are rotated by 0°(a), 90°(b), 180°(c) and 360°(d)

    图  8  CNPs/PDMS导热复合材料断裂伸长率与超声处理时间的关系曲线

    Figure  8.  Relationship between the elongation at break of CNPs/PDMS thermally conductive composites and sonication time

    图  9  不同超声处理时间的CNPs/PDMS导热复合材料的TGA曲线

    Figure  9.  TGA curves of CNPs/PDMS thermally conductive composites with different sonication times

    表  1  不同超声处理时间的CNPs/PDMS导热复合材料厚度随时间的变化

    Table  1.   Changes in thickness of CNPs/PDMS thermally conductive composites with different sonication times

    Sonication time/s00.51.61.92.22.52.8
    Product thickness/μm 70 90.4 110.3 115.8 110 102.7 95.6
    下载: 导出CSV

    表  2  不同超声处理时间的CNPs/PDMS导热复合材料的导热性能参数

    Table  2.   Thermal conductivity parameters of CNPs/PDMS thermally conductive composites with different sonication time

    Duration of sonication/sSpecific heat capacity C/
    (J(g·K)−1)
    Density ρ/
    (kg·m−3)
    Thermal diffusivity α/
    (m2·s−1)
    1.6 1.326 1.32 2.541
    1.9 1.334 1.27 3.412
    2.2 1.338 1.25 3.246
    2.5 1.324 1.33 3.010
    2.8 1.316 1.37 2.879
    下载: 导出CSV

    表  3  PDMS和CNTs的质量分数

    Table  3.   Mass fractions of PDMS and CNTs

    ParameterSonication times/s
    1.61.92.22.52.8
    c/wt%32.129.927.333.737.5
    PDMS/wt%7377797268
    CNTs/wt%2723212832
    Note: c—Remaining amount of each time parameter sample at 600℃.
    下载: 导出CSV
  • [1] HARRIS P J F. Carbon nanotube composites[J]. Metallurgical Reviews,2004,49(1):31-43. doi: 10.1179/095066004225010505
    [2] 冯昌平, 黄川斌, 白皓晨, 等. 氧化铝/碳纳米管填充乙烯基聚二甲基硅氧烷的导热网络结构及导热模型分析[J]. 合成橡胶工业, 2016, 39(6):448-451. doi: 10.3969/j.issn.1000-1255.2016.06.004

    FENG C P, HUANG C B, BAI H C, et al. Analysis of the heat conduction network structure and heat conduction model of alumina/carbon nanotube filled vinyl polydimethylsiloxane[J]. Synthetic Rubber Industry,2016,39(6):448-451(in Chinese). doi: 10.3969/j.issn.1000-1255.2016.06.004
    [3] ZENG X, YAO Y, GONG Z, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [4] 单博, 谢兰, 薛白, 等. 碳质纳米填料在聚合物导热复合材料中的研究进展[J]. 高分子材料科学与工程, 2019(6):175-182, 190.

    SHAN B, XIE L, XUE B, et al. Research progress of carbon nanofillers in polymer thermal conductive composites[J]. Polymer Materials Science and Engineering,2019(6):175-182, 190(in Chinese).
    [5] SAFADI B, ANDREWS R, GRULKE E A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films[J]. Journal of Applied Polymer Science,2010,84(14):2660-2669.
    [6] CHANG T E, KISLIUK A, RHODES S M, et al. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite[J]. Polymer,2006,47(22):7740-7746. doi: 10.1016/j.polymer.2006.09.013
    [7] GUO H, SREEKUMAR T V, LIU T, et al. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films[J]. Polymer,2005,46(9):3001-3005. doi: 10.1016/j.polymer.2005.02.013
    [8] ABRAHAM T N, RATNA D, SIENGCHIN S, et al. Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites[J]. Journal of Applied Polymer Science,2008,110(4):2094-2101. doi: 10.1002/app.28773
    [9] 郭文满. 石墨烯导热纳米复合材料的研究[D]. 泉州: 华侨大学, 2013.

    GUO W M. Research on graphene thermally conductive nanocomposites[D]. Quanzhou: Huaqiao University, 2013(in Chinese).
    [10] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nano composites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [11] YANG K, GU M Y, GUO Y P, et al. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites[J]. Carbon,2009,47(7):1723-1737. doi: 10.1016/j.carbon.2009.02.029
    [12] SRIVASTAVA R, BANERJEE S, JEHNICHEN D, et al. In situ preparation of polyimide composites based on functionalized carbon nanotubes[J]. Macromolecular Materials <italic>&</italic> Engineering,2010,294(2):96-102.
    [13] KIM D K, KYUNG W O, SEONG H K. Synthesis of polyaniline/multiwall carbon nanotube composite via inverse emulsion polymerization[J]. Journal of Polymer Science Part B: Polymer Physics,2010,46(20):2255-2266.
    [14] WU D M, GAO X L, SUN J Y, et al. Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites[J]. Composites Part A: Applied Science<italic>&</italic> Manufacturing,2017,102:88-95.
    [15] GAO X L, HUANG Y, LIU Y, et al. Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method[J]. Rsc Advances,2017,7(24):14761-14768. doi: 10.1039/C7RA02061A
    [16] 范晓静, 吴大鸣, 高小龙, 等. 基于空间限域强制组装法制备短切碳纤维-碳纳米管/聚二甲基硅氧烷导电复合材料性能[J]. 复合材料学报, 2019, 36(11):2552-2560.

    FAN X J, WU D M, GAO X L, et al. Preparation of chopped carbon fiber-carbon nanotube/polydimethylsiloxane conductive composites based on space-limited forced assembly method[J]. Acta Materiae Compositae Sinica,2019,36(11):2552-2560(in Chinese).
    [17] DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science,2014,39(4):627-655. doi: 10.1016/j.progpolymsci.2013.07.007
    [18] TROUGHTON M J. Handbook of plastics joining: A practical guide[M]. 2ed Ed. New York: William Andrew, 2008: 1-10.
    [19] 贺西平. 塑料和聚合物的超声焊接[J]. 声学技术, 2014, 33(2):131-136.

    HE X P. Ultrasonic welding of plastics and polymers[J]. Acoustics Technology,2014,33(2):131-136(in Chinese).
    [20] SUN J Y, ZHAO Y N, YANG Z G, et al. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors[J]. Nanotechnology,2018,29(35):355304. doi: 10.1088/1361-6528/aacc59
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  384
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 录用日期:  2020-01-14
  • 网络出版日期:  2020-02-14
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回