留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算

徐可 陆春华 宣广宇 张灵灵 倪铭志 刘荣桂

徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
引用本文: 徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
XU Ke, LU Chunhua, XUAN Guangyu, et al. Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003
Citation: XU Ke, LU Chunhua, XUAN Guangyu, et al. Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2348-2357. doi: 10.13801/j.cnki.fhclxb.20200212.003

混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算

doi: 10.13801/j.cnki.fhclxb.20200212.003
基金项目: 国家自然科学基金(51578267; 51878319);江苏省“六大人才高峰”高层次人才选拔培养资助项目(2015-JZ-008)
详细信息
    通讯作者:

    陆春华,博士,教授,博士生导师,研究方向为混凝土结构性能及耐久性、FRP筋混合配筋混凝土结构性能 E-mail:lch79@mail.ujs.edu.cn

  • 中图分类号: TU375.1;TU528.572

Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars

  • 摘要: 为研究玻璃纤维增强聚合物复合材料(GFRP)筋与普通钢筋混合配筋钢纤维增强混凝土(SF/混凝土)梁的受弯性能及其受弯承载力计算方法,在考虑受拉区混凝土抗拉强度的基础上,给出混合配筋SF/混凝土梁的界限配筋率及受弯承载力计算公式;在此基础上设计制作了三种配筋方式的SF/混凝土梁,重点探讨了混合配筋率及筋材面积比(Af/As)对试验梁失效模式和受弯承载力的影响;同时,借助已有相关试验结果,对比分析了混凝土强度对混合配筋SF/混凝土梁受弯性能的影响。试验和对比分析结果表明:混合配筋SF/混凝土梁正截面应变仍符合平截面假定;相同配筋形式下,混合配筋SF/混凝土梁的受弯承载力和跨中挠度随筋材面积比Af/As的增加而增大;单层配筋梁的受弯承载力比双层配筋梁大;合理提高混凝土强度可在充分发挥GFRP筋抗拉作用的同时进一步提高混合配筋SF/混凝土梁的受弯承载力;采用本文给出的界限配筋率公式能有效预测混合配筋SF/混凝土梁的失效模式;梁受弯承载力建议公式的预测值与试验值吻合较好,具有良好的适用性。

     

  • 图  1  玻璃纤维增强聚合物复合材料(GFRP)筋和钢筋的典型拉伸应力-应变曲线

    Figure  1.  Typical tensile stress-strain curves of glass fiber reinforced polymer(GFRP) and steel bars

    GFRP12—GFRP bar with a diameter of 12 mm; GFRP16—GFRP bar with a diameter of 16 mm; S12—Steel bar with a diameter of 12 mm

    图  2  试验混凝土梁尺寸及截面配筋示意图

    Figure  2.  Schematic diagram of size and reinforcements of concrete specimens

    FRP—Fiber reinforced polymer composites; HRP—hybrid reinforcing bars

    图  3  单层配筋和混合配筋SF/混凝土梁的弯矩-挠度曲线

    Figure  3.  Moment-deflection curves of SF/concrete beams with single-layer reinforcement and with hybrid reinforcing bars

    图  4  钢筋-SF/混凝土梁和GFRP12-钢筋-SF/混凝土梁的跨中截面应变分布

    Figure  4.  Strain distribution at mid-span section of steel-SF/concrete beam and GFRP12-steel-SF/concrete beam

    图  5  混合配筋SF/混凝土梁的典型破坏形态

    Figure  5.  Typical failure modes of SF/concrete beams with hybrid reinforcing bars

    图  6  C30级和CF50级SF/混凝土梁受弯承载力实测值对比

    Figure  6.  Comparison of measured values of flexural capacity of C30 and CF50 concrete beams

    图  7  混合配筋SF/混凝土梁受弯承载力与筋材面积比的关系

    Figure  7.  Relationship between flexural capacity of SF/concrete beams with hybrid reinforcing bars and area ratio of GFRP bars to steel bars

    图  8  混合配筋混凝土梁受弯承载力实测值与预测值关系

    Figure  8.  Relationship between measured values and predicted values of flexural capacity of concrete beams with hybrid reinforcing bars

    表  1  GFRP筋和钢筋的力学性能

    Table  1.   Mechanical properties of GFRP and steel bars

    TypeElastic modulus/GPaYield strength/MPaTensile strength/MPa
    GFRP12 bar 40.06 868.22
    GFRP16 bar 45.69 958.20
    S12 bar 200.00 506.51 610.16
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix ratio of concrete

    Water cement ratioMaterial density/(kg·m−3)
    CementWaterSandStoneSteel fiber
    0.36 447 160 658 1 146 39
    下载: 导出CSV

    表  3  钢纤维(SF)特征参数

    Table  3.   Characteristic parameters of steel fiber(SF)

    Fiber typeLength/
    mm
    Equivalent diameter/mmTensile strength/MPa
    Cold pull end hook 30 0.5 ≥1 000
    下载: 导出CSV

    表  4  混合配筋SF/混凝土梁设计参数

    Table  4.   Main parameters of SF/concrete beams with hybrid reinforcing bars

    FormSpecimenfcu/MPaSteel barGFRP barAs/mmAf/mmAf/As
    Single-layer
    reinforcement
    Steel-SF/concrete 51.46 4S12 452 0
    GFRP12-SF/concrete 50.93 4G12 452
    GFRP12-steel-SF/concrete 50.82 2S12 2G12 226 226 1
    GFRP16-steel-SF/concrete 51.64 2S12 2G16 226 402 1.78
    Double-layer reinforcement Steel-SF/concrete(D) 51.31 4S12 452 0
    GFRP12-steel-SF/concrete(D) 51.88 2S12 2G12 226 226 1
    GFRP16-steel-SF/concrete(D) 52.17 2S12 2G16 226 402 1.78
    Notes: D—Double-layer reinforcement; fcu—Measured value of 28 days compressive strength of concrete standard cube; The symbol of “4S12” means 4 steel bars with a diameter of 12 mm; The symbol of “4G12” means 4 GFRP bars with a diameter of 12 mm; As—Cross-sectional area of steel bars; Af—Cross-sectional area of GFRP bars; Af/As—Area ratio of GFRP bars to steel bars.
    下载: 导出CSV

    表  5  混合配筋SF/混凝土梁试验结果及对比分析

    Table  5.   Test results of SF/concrete beams with hybrid reinforcing bars and comparative analysis

    Data
    source
    SpecimenStrength
    grade
    ρbh,F/%ρbh,E/%ρh,F/%ρh,E/%$M_{\rm{u} }^{\rm{m}}$/
    (kN·m)
    $M_{\rm{u} }^{\rm{p}}$/
    (kN·m)
    $M_{\rm{cr} }^{\rm{m}}$/
    (kN·m)
    Failure
    modes
    Beams corresponding
    to Ref. [15]
    This paper Steel-SF/concrete CF50 0.98 0.98 68.52 62.25 14.00 SY-CC1 S-1
    GFRP12-SF/concrete CF50 1.18 0.20 78.08 71.91 11.30 CC
    GFRP12-steel-SF/concrete CF50 1.13 3.81 1.08 0.59 75.42 67.04 12.88 SY-CC-FF GS-1
    GFRP16-steel-SF/concrete CF50 1.23 3.88 1.64 0.69 81.23 85.28 12.63 SY-CC2 GS-2
    Steel-SF/concrete(D) CF50 1.07 1.07 65.53 63.34 13.00 SY-CC1 S-3
    GFRP12-steel-SF/concrete(D) CF50 1.13 3.87 1.17 0.64 69.64 64.60 13.79 SY-CC-FF GS-5
    GFRP16-steel-SF/concrete(D) CF50 1.22 3.89 1.79 0.75 76.52 75.91 10.01 SY-CC2 GS-6
    Zhang[15] S-1 C30 0.98 0.98 59.12 53.80 11.89 SY-CC1
    GS-1 C30 0.81 2.57 1.08 0.59 57.50 50.19 9.64 SY-CC2
    GS-2 C30 0.83 2.57 1.64 0.69 63.30 60.64 9.80 SY-CC2
    S-3 C30 1.07 1.07 60.77 55.97 12.01 SY-CC1
    GS-5 C30 0.81 2.57 1.17 0.64 53.79 51.14 9.70 SY-CC2
    GS-6 C30 0.83 2.57 1.79 0.75 50.56 54.20 9.87 SY-CC2
    Notes: ρbh,F and ρbh,E are the limit (balance) reinforcement ratios corresponding to the two equilibrium states; ρh,F and ρh,E are two kinds of hybrid reinforcement ratios; $M_{\rm{u} }^{\rm{m}}$ is the measured flexural capacity; $\ M_{\rm{u} }^{\rm{p}}$ is the predicted flexural capacity; $M_{\rm{cr} }^{\rm{m}}$ is the measured crack moment; SY-CC1 is the SF/Concrete crushing in the compression zone after the steel bar yielded; CC is the SF/Concrete crushing in the compression zone; SY-CC-FF is the GFRP bar fractured after the steel bar yielded and SF/Concrete crushing in compression zone; SY-CC2 is the SF/Concrete crushing in the compression zone after the steel bar yielded, and the GFRP bar is not fractured; S-1 is the single-layer reinforced concrete beam (the diameter of steel bars is 12 mm); GS-1 is the single-layer concrete beam reinforced with hybrid GFRP bars and steel bars (the diameter of steel bars and GFRP bars are 12 mm); GS-2 is the single-layer concrete beam reinforced with hybrid GFRP bars and steel bars (the diameter of steel bars is 12 mm and the diameter of GFRP bars is 16 mm); S-3 is the double-layer reinforced concrete beam (the diameter of steel bars is 12 mm); GS-5 is the double-layer concrete beam reinforced with hybrid GFRP bars and steel bars (the diameter of steel bars and GFRP bars are 12 mm); GS-6 is the double-layer concrete beam reinforced with hybrid GFRP bars and steel bars (the diameter of steel bars is 12 mm and the diameter of GFRP bars is 16 mm).
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] BENCAEDINO F, CONDELLO A, OMBRES L. Numerical and analytical modeling of concrete beams with steel, FRP and hybrid FRP-steel reinforcements[J]. Composite Structures,2016,140:53-65. doi: 10.1016/j.compstruct.2015.12.045
    [3] 庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. doi: 10.3969/j.issn.1001-7372.2016.07.010

    PANG Lei, QU Wenjun, LI Ang. Calculation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.010
    [4] 张晓亮, 屈文俊. 无腹筋混合配筋混凝土梁抗剪性能试验研究[J]. 同济大学学报(自然科学版), 2010, 38(10):1421-1427.

    ZHANG Xiaoliang, QU Wenjun. Shear behavior of concrete beams reinforced with hybrid (GFRP and steel) bars without stirrups[J]. Journal of Tongji University (Natural Science),2010,38(10):1421-1427(in Chinese).
    [5] 韩全吉. FRP筋钢纤维高强混凝土梁正常使用时随性能研究[D]. 郑州: 郑州大学, 2015.

    HAN Quanji. Study on the time-dependent behavior of steel fiber reinforced high-strength concrete beams with FRP bars under service condition[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese).
    [6] NGUYEN D L, KIM D J, RYU G S, et al. Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete[J]. Composites Part B: Engineering,2013,45(1):1104-1116. doi: 10.1016/j.compositesb.2012.07.012
    [7] 王仁龙. BFRP筋钢纤维高强混凝土梁受弯非线性有限元分析[D]. 郑州: 郑州大学, 2016.

    WANG Renlong. Nonlinear finite element analysis of BFRP bar-reinforced high-strength concrete beams with steel fibers[D]. Zhengzhou: Zhengzhou University, 2016(in Chinese).
    [8] KARA I F, ASHOUR A F, KÖROGLU M A. Flexural behavior of hybrid FRP/steel reinforced concrete beams[J]. Composite Structures,2015,129:111-121. doi: 10.1016/j.compstruct.2015.03.073
    [9] 葛文杰, 张继文, 戴航, 等. FRP筋和钢筋混合配筋增强混凝土梁受弯性能[J]. 东南大学学报(自然科学版), 2012, 42(1):114-119. doi: 10.3969/j.issn.1001-0505.2012.01.022

    GE Wenjie, ZHANG Jiwen, DAI Hang, et al. Flexural behavior of concrete beam with hybrid reinforcement of FRP bars and steel bars[J]. Journal of Southeast University (Natural Science Edition),2012,42(1):114-119(in Chinese). doi: 10.3969/j.issn.1001-0505.2012.01.022
    [10] ZHANG L, SUN Y, XIONG W. Experimental study on the flexural deflections of concrete beam reinforced with basalt FRP bars[J]. Materials and Structures,2015,48(10):3279-3293. doi: 10.1617/s11527-014-0398-0
    [11] 陆春华, 阮向杰, 张壮壮, 等. 混合配筋混凝土梁裂缝宽度试验及计算方法探讨[J]. 中国公路学报, 2019, 32(9):124-131, 142.

    LU Chunhua, RUAN Xiangjie, ZHANG Zhuangzhuang, et al. Experiment and calculation of crack width of concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2019,32(9):124-131, 142(in Chinese).
    [12] YANG J M, MIN K H, SHIN H O, et al. Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars[J]. Composites Part B: Engineering,2012,43(3):1077-1086. doi: 10.1016/j.compositesb.2012.01.044
    [13] 朱海堂, 程晟钊, 高丹盈, 等. BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论[J]. 复合材料学报, 2018, 35(12):3313-3323.

    ZHU Haitang, CHENG Shengzhao, GAO Danying, et al. Experimental and theoretical study on the flexural capacity of high-strength concrete beams reinforced with BFRP bars and steel fiber[J]. Acta Materiae Compositae Sinica,2018,35(12):3313-3323(in Chinese).
    [14] LEUNG H Y, BALENDRAN R V. Flexural behavior of concrete beams internally reinforced with GFRP rods and steel rebars[J]. Structural Survey,2003,21(4):146-157. doi: 10.1108/02630800310507159
    [15] 张壮壮. FRP筋与普通钢筋混合配筋梁受弯性能试验研究[D]. 镇江: 江苏大学, 2018.

    ZHANG Zhuangzhuang. Experimental study on flexural behavior of FRP bars and ordinary steel bars[D]. Zhenjiang: Jiangsu University, 2018(in Chinese).
    [16] American Concrete Institute. Guide for the design and structural of concrete reinforced with fiber-reinforced polymer (FRP) bars: ACI 440.1R—15 [S]. Michigan: American Concrete Institute, 2015.
    [17] 中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS 38∶2004[S]. 北京: 中国计划出版社, 2004.

    China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures: CECS 38∶2004[S]. Beijing: China Planning Press, 2004(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [19] 孔祥清, 于洋, 邢丽丽, 等. BFRP筋与钢筋混合配筋混凝土梁抗弯性能试验研究[J]. 玻璃钢/复合材料, 2018(8):49-55.

    KONG Xiangqing, YU Yang, XING Lili, et al. Experiment study on the flexural behaviour of hybrid bfrp/steel reinforced concrete beams[J]. Fiber Reinforced Plastics/Composites,2018(8):49-55(in Chinese).
    [20] 刘华杰. 纤维塑料筋混凝土受弯构件试验研究与理论分析[D]. 上海: 同济大学, 2003.

    LIU Huajie. Experimental and theory analytical studies on concrete flexural members reinforced with FRP rebars[D]. Shanghai: Tongji University, 2003(in Chinese).
    [21] 郑乔文. FRP筋混凝土梁设计理论研究[D]. 上海: 同济大学, 2006.

    ZHENG Qiaowen. Studies on design theory for concrete beams reinforced with FRP rebars[D]. Shanghai: Tongji University, 2006(in Chinese).
    [22] 刘兰, 卢亦焱, 徐谦. 钢筋钢纤维高强混凝土梁的抗弯性能试验研究[J]. 铁道学报, 2010, 32(5):130-135.

    LIU Lan, LU Yiyan, XU Qian. Experimental study on flexural behavior of steel fiber reinforced high strength concrete beams[J]. Journal of the Railway,2010,32(5):130-135(in Chinese).
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  361
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-01-01
  • 网络出版日期:  2020-02-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回