留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响

王腾蛟 许金余 朱从进 任韦波

王腾蛟, 许金余, 朱从进, 等. 灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响[J]. 复合材料学报, 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
引用本文: 王腾蛟, 许金余, 朱从进, 等. 灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响[J]. 复合材料学报, 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
WANG Tengjiao, XU Jinyu, ZHU Congjin, et al. Effects of cement-powder ratio on static mechanical properties and failure forms of styrene-acrylic emulsion-based cement composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002
Citation: WANG Tengjiao, XU Jinyu, ZHU Congjin, et al. Effects of cement-powder ratio on static mechanical properties and failure forms of styrene-acrylic emulsion-based cement composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2324-2335. doi: 10.13801/j.cnki.fhclxb.20200212.002

灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响

doi: 10.13801/j.cnki.fhclxb.20200212.002
基金项目: 国家自然科学基金(51208507; 51378497)
详细信息
    通讯作者:

    许金余,博士,教授,博士生导师,研究方向为结构工程与防护工程 E-mail:xujinyuafeu@163.com

  • 中图分类号: TU528

Effects of cement-powder ratio on static mechanical properties and failure forms of styrene-acrylic emulsion-based cement composites

  • 摘要: 对不同灰粉比的苯丙乳液基水泥复合材料进行定伸、拉伸和剪切试验,通过测量弹性恢复率、拉伸剪切力学性能指标、变形性能指标、能耗性能指标和负荷位移,研究了灰粉比对苯丙乳液基水泥复合材料定伸黏结性能、拉伸力学性能、剪切力学性能及破坏形态的影响,结合FESEM试验和压汞测孔(MIP)试验结果,分析了灰粉比对苯丙乳液基水泥复合材料力学性能及破坏形态影响规律的微观机制。结果表明:适当增大灰粉比能够改善苯丙乳液基水泥复合材料的微观形貌,优化孔隙结构,提高密实度,显著增强了复合材料的力学性能;随着灰粉比的增大,苯丙乳液基水泥复合材料的定伸黏结性能逐渐降低,拉伸剪切力学性能不断增强,拉伸剪切变形性能和能耗性能均先提升后降低。灰粉比为30%~35%时,苯丙乳液基水泥复合材料的拉伸剪切力学性能最佳;灰粉比为45%时,苯丙乳液基水泥复合材料的拉伸剪切变形性能和能耗性能均低于灰粉比为20%的苯丙乳液基水泥复合材料。随着灰粉比的增大,苯丙乳液基水泥复合材料能够承受的拉伸和剪切负荷位移均先增大后减小,其破坏形态逐步由“内聚破坏”转为“黏结破坏”。

     

  • 图  1  苯丙乳液基水泥复合材料试件

    Figure  1.  Styrene-acrylic emulsion-based cement composite specimen

    图  2  定伸试验模具

    Figure  2.  Fixed tensile test mold

    图  3  拉伸试验设备夹具

    Figure  3.  Tensile test equipment fixture

    图  4  剪切试验设备夹具

    Figure  4.  Shear test equipment fixture

    图  5  不同灰粉比的苯丙乳液基水泥复合材料的定伸试验破坏形态

    Figure  5.  Failure forms of fixed tensile test of styrene-acrylic emulsion-based cement composites with different cement-powder ratios

    图  6  灰粉比对苯丙乳液基水泥复合材料弹性恢复率的影响

    Figure  6.  Effect of cement-powder ratio on elastic recovery rate of styrene-acrylic emulsion-based cement composites

    图  7  灰粉比对苯丙乳液基水泥复合材料拉伸性能的影响

    Figure  7.  Effect of cement-powder ratio on tensile performance of styrene-acrylic emulsion-based cement composites

    图  8  灰粉比对苯丙乳液基水泥复合材料拉伸变形性能的影响

    Figure  8.  Effect of cement-powder ratio on tensile deformation performance of styrene-acrylic emulsion-based cement composites

    图  9  灰粉比对苯丙乳液基水泥复合材料拉伸能耗性能的影响

    Figure  9.  Effect of cement-powder ratio on tensile energy consumption performance of styrene-acrylic emulsion-based cement composites

    图  10  灰粉比对苯丙乳液基水泥复合材料剪切性能的影响

    Figure  10.  Effect of cement-powder ratio on shear performance of styrene-acrylic emulsion-based cement composites

    图  11  灰粉比对苯丙乳液基水泥复合材料剪切变形性能的影响

    Figure  11.  Effect of cement-powder ratio on shear deformation performance of styrene-acrylic emulsion-based cement composites

    图  12  灰粉比对苯丙乳液基水泥复合材料剪切能耗性能的影响

    Figure  12.  Effect of cement-powder ratio on shear energy consumption performance of styrene-acrylic emulsion-based cement composites

    图  13  不同灰粉比的苯丙乳液基水泥复合材料典型的拉伸破坏形态

    Figure  13.  Typical forms of tensile failure of styrene-acrylic emulsion-based cement composites with different cement-powder ratios

    图  14  不同灰粉比的苯丙乳液基水泥复合材料典型的剪切破坏形态

    Figure  14.  Typical forms of shear failure of styrene-acrylic emulsion-based cement composites with different cement-powder ratios

    图  15  灰粉比对苯丙乳液基水泥复合材料微观形貌的影响

    Figure  15.  Effect of cement-powder ratio on the microscopic appearance of styrene-acrylic emulsion-based cement composite specimens

    图  16  苯丙乳液基水泥复合材料典型的微观结构

    Figure  16.  Typical microstructures of styrene-acrylic emulsion-based cement composites

    图  17  苯丙乳液基水泥复合材料孔径分布微分曲线

    Figure  17.  Differential curves of pore diameter distribution for styrene-acrylic emulsion-based cement composites

    图  18  苯丙乳液基水泥复合材料孔隙量百分比

    Figure  18.  Porosity percentage of styrene-acrylic emulsion-based cement composites

    表  1  水泥的性能指标

    Table  1.   Performance indicators of cement

    StabilityLoss on ignition/%Setting time/minCompressive strength/MPaFlexural strength/MPa
    Initial condensationFinal condensation3 d28 d3 d28 d
    Qualified1.5414129632.254.66.79.1
    下载: 导出CSV

    表  2  Acronal S400F ap型苯丙乳液的性能指标

    Table  2.   Performance indicators of Acronal S400F ap type styrene-acrylic emulsion

    ExteriorAverage granularity/μmGlass transition temperature/℃Solid content/%Viscosity/(mPa·s)pH
    Milky white liquid0.1–655–57400–1 8007.0–8.4
    下载: 导出CSV

    表  3  SN-DISPERSANT 5040型分散剂的性能指标

    Table  3.   Performance indicators of SN-DISPERSANT 5040 dispersant

    ExteriorIonicitySolubilitySolid component/%ProportionpHViscosity /(mPa·s)
    5℃25℃
    Light yellow liquidAnionSoluble in water42.51.297.51 700450
    下载: 导出CSV

    表  4  DN-12的性能指标

    Table  4.   Performance indicators of DN-12

    ExteriorMolecular formulaContentMoistureAcidity
    Colorless and transparent, no mechanical impuritiesC12H24O3≥ 99.0%≤ 0.1%≤ 0.05%
    下载: 导出CSV

    表  5  滑石粉的性能指标

    Table  5.   Performance indicators of talcum powder

    TypeGradeColorFinenessSilica content/%Magnesium oxide content/%
    Super fine talcum powderFirst levelPure white6006030
    下载: 导出CSV

    表  6  苯丙乳液基水泥复合材料配合比

    Table  6.   Mix ratio of styrene-acrylic emulsion-based cement composite specimen

    Specimen
    number
    Cement-powder
    ratio/%
    Powder-liquid
    ratio
    Cement/
    g
    Talcum
    powder/g
    Styrene-acrylic
    emulsion/g
    Dispersant/
    g
    Defoamer/
    g
    Filming
    aid/g
    1# 20 0.40 8 32 100 1.12 0.7 5
    2# 25 0.40 10 30 100 1.12 0.7 5
    3# 30 0.40 12 28 100 1.12 0.7 5
    4# 35 0.40 14 26 100 1.12 0.7 5
    5# 40 0.40 16 24 100 1.12 0.7 5
    6# 45 0.40 18 22 100 1.12 0.7 5
    下载: 导出CSV

    表  7  苯丙乳液基水泥复合材料的孔隙结构参数

    Table  7.   Pore structure parameters of styrene-acrylic emulsion-based cement composites

    Specimen numberTotal pore volume/(mL·g−1)Average aperture/nmMedian aperture/nmOptimum aperture/nmPercentage of porosity/%
    <10 nm10–100 nm100–1 000 nm>1 000 nm
    1# 0.2407 116.40 14 980.21 11 962.32 3.15 7.51 5.67 83.67
    2# 0.1401 103.15 9 067.39 10 955.03 4.43 9.80 12.35 73.42
    4# 0.1023 72.39 2 211.74 10.35 8.16 27.51 8.16 56.17
    6# 0.0659 54.83 606.84 7.16 9.15 30.66 13.16 47.03
    下载: 导出CSV
  • [1] 王洁宁, 赵晓鹏. 机场安全热点本体建模及智能划分研究[J]. 中国安全科学学报, 2016, 26(5):47-52.

    WANG Jiening, ZHAO Xiaopeng. Ontology modeling and intelligent division of airport security hotspots[J]. China Safety Science Journal,2016,26(5):47-52(in Chinese).
    [2] 张献民, 刘小兰, 张子文. 基于振动特性的机场刚性道面传荷性能[J]. 北京航空航天大学学报, 2018, 44(9):1787-1796.

    ZHANG Xianmin, LIU Xiaolan, ZHANG Ziwen. Transshipment performance of airport rigid pavement based on vibration characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(9):1787-1796(in Chinese).
    [3] WANG D Y, FEI W S. Joint issue discussion on cement concrete pavement[J]. Advanced Materials Research,2013,671-674(2):1179-1182.
    [4] LIU Z G, LI J N, CAO G B. The treatment technology of void beneath cement concrete pavement bottom in cold area[J]. Advanced Materials Research,2014,1049-1050:339-341. doi: 10.4028/www.scientific.net/AMR.1049-1050.339
    [5] LIU Z G, XU F M, CAO G B. Study on cement concrete pavement treatment methods of common damage diseases[J]. Applied Mechanics and Materials,2014,716-717:307-309. doi: 10.4028/www.scientific.net/AMM.716-717.307
    [6] 马正军, 英红, 付琴, 等. 基于数字图像的水泥混凝土路面嵌缝料损坏识别[J]. 建筑材料学报, 2013, 16(2):349-353, 359.

    MA Zhengjun, YING Hong, FU Qin, et al. Damage identification of cement concrete pavement based on digital image[J]. Journal of Building Materials,2013,16(2):349-353, 359(in Chinese).
    [7] 王治, 王晋斌. 水泥混凝土路面嵌缝料及灌封工艺的研究[J]. 中国建筑防水, 2013(6):35-41.

    WANG Zhi, WANG Jinbin. Research on caulking material for cement concrete pavement and its construction[J]. China Building Waterproofing,2013(6):35-41(in Chinese).
    [8] DONG E, LIU J, WU S. Study in the joint sealants of the concrete pavements[C]//2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing: IEEE, 2011.
    [9] LIU Y, PENG P. A key technique for cement concrete pavement joint filler construction in chilly regions[J]. Applied Mechanics and Materials,2012,170-173:3255-3259. doi: 10.4028/www.scientific.net/AMM.170-173.3255
    [10] LAGO B D, BIONDINI F, TONIOLO G, et al. Experimental investigation on the influence of silicone sealant on the seismic behaviour of precast façades[J]. Bulletin of Earthquake Engineering,2017,15(4):1771-1787. doi: 10.1007/s10518-016-0045-y
    [11] 伍家卫, 吕维华, 王艳, 等. PFS硅酮建筑密封胶的制备与性能研究[J]. 化工新型材料, 2011, 39(4):71-73. doi: 10.3969/j.issn.1006-3536.2011.04.020

    WU Jiawei, LV Weihua, WANG Yan, et al. Preparation and properties of PFS silicone building sealant[J]. New Chemical Materials,2011,39(4):71-73(in Chinese). doi: 10.3969/j.issn.1006-3536.2011.04.020
    [12] 滕晓波, 吴萍, 孙静, 等. 氧化石墨烯改性聚硫密封胶[J]. 高分子材料科学与工程, 2013, 29(6):54-57.

    TENG Xiaobo, WU Ping, SUN Jing, et al. Graphene oxide modified polysulfide sealant[J]. Polymer Materials Science and Engineering,2013,29(6):54-57(in Chinese).
    [13] 毛俊轩, 潘林, 熊婷. 硅烷改性聚氨酯密封胶与PC粘接性的研究[J]. 化学研究与应用, 2016, 28(11):1654-1656. doi: 10.3969/j.issn.1004-1656.2016.11.023

    MAO Junxuan, PAN Lin, XIONG Ting. Study of adhesion effect between silylated polyurethane sealant with polycarbonate[J]. Chemical Research and Application,2016,28(11):1654-1656(in Chinese). doi: 10.3969/j.issn.1004-1656.2016.11.023
    [14] QUAN Y, HE P, ZHOU B, et al. Modification of polysulfide sealant with polysulfide polythio-urethane-urea[J]. Journal of Applied Polymer Science,2007,106(4):2599-2604. doi: 10.1002/app.26792
    [15] 袁捷, 刘文博. 民用机场水泥混凝土道面接缝嵌缝材料性能指标分析[J]. 公路交通科技, 2016, 33(9):7-13. doi: 10.3969/j.issn.1002-0268.2016.09.002

    YUAN Jie, LIU Wenbo. Analysis of performance indexes of joints in cement concrete pavement joints for civil airports[J]. Journal of Highway and Transportation Research and Development,2016,33(9):7-13(in Chinese). doi: 10.3969/j.issn.1002-0268.2016.09.002
    [16] 张元霞, 马建中, 徐群娜. 阳离子聚合物乳液的研究进展[J]. 材料导报, 2017, 31(17):64-70.

    ZHANG Yuanxia, MA Jianzhong, XU Qunna. Research advances in cationic polymer emulsions[J]. Materials Review,2017,31(17):64-70(in Chinese).
    [17] 蒋凌飞, 卢子臣, 孔祥明, 等. 胶体粒子表面改性及其对水泥水化的影响[J]. 硅酸盐学报, 2017, 45(5):601-607.

    JIANG Lingfei, LU Zichen, KONG Xiangming, et al. Surface modification of colloidal particles and its effect on cement hydration[J]. Journal of the Chinese Ceramic Society,2017,45(5):601-607(in Chinese).
    [18] 方征平, 许承威. 相分散-交联在聚合物共混中的协同作用[J]. 高分子材料科学与工程, 2016, 15(3):116-118.

    FANG Zhengping, XU Chengwei. Synergistic effect of phase dispersion-crosslinking in polymer blending[J]. Polymer Science and Engineering,2016,15(3):116-118(in Chinese).
    [19] XU S, LUO Y, TAN B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromolecular Rapid Communications,2013,34(6):471-484. doi: 10.1002/marc.201200788
    [20] 刘鸿铭, 费逸伟, 孙世安, 等. 聚合物水泥基复合材料及其防腐性能应用研究[J]. 化工时刊, 2016, 30(12):31-36.

    LIU Hongming, FEI Yiwei, SUN Shian, et al. Application of polymer cement matrix composites and their anticorrosion properties[J]. Chemical Industry Journal,2016,30(12):31-36(in Chinese).
    [21] 衡艳阳, 赵文杰. 聚合物改性水泥基材料的研究进展[J]. 硅酸盐通报, 2014, 32(2):365-371.

    HENG Yanyang, ZHAO Wenjie. Research development of polymer modified cement based materials[J]. Bulletin of the Chinese Ceramic Society,2014,32(2):365-371(in Chinese).
    [22] 吴丽丽, 王云飞, 谢灵慧, 等. 玻璃纤维增强聚合物复合材料筋与工程水泥基复合材料黏结性能[J]. 复合材料学报, 2020, 37(3):696-706.

    WU Lili, WANG Yunfei, XIE Linghui, et al. Bonding behavior between glass fiber reinforced polymer composite bars and engineered cementitious composite[J]. Acta Materiae Compositae Sinica,2020,37(3):696-706(in Chinese).
    [23] 韦选纯, 汤盛文, 何真, 等. 聚乙烯醇纤维增强钢渣粉-水泥复合材料基本力学性能及微观结构[J]. 复合材料学报, 2019, 36(8):1918-1925.

    WEI Xuanchun, TANG Shengwen, HE Zhen, et al. Basic mechanical properties and microstructure of polyvinyl alcohol fiber reinforced steel slag powder-cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1918-1925(in Chinese).
    [24] 郑少鹏, 牛开民, 田波, 等. 聚合物乳液对水泥砂浆流变性能的影响[J]. 建筑材料学报, 2017, 20(6):962-969. doi: 10.3969/j.issn.1007-9629.2017.06.009

    ZHENG Shaopeng, NIU Kaimin, TIAN Bo, et al. Effect of polymer emulsion on rheological properties of cement mortar[J]. Journal of Building Materials,2017,20(6):962-969(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.009
    [25] 樊金杰, 郭锦棠, 胡苗苗, 等. 核壳型丁苯胶乳对水泥基复合材料力学性能的影响及其作用机制[J]. 复合材料学报, 2019, 36(2):506-513.

    FAN Jinjie, GUO Jintang, HU Miaomiao, et al. Effect of styrene-butadiene latex with core-shell structure on the mechanical properties of cement-based composite materials and its mechanism[J]. Acta Materiae Compositae Sinica,2019,36(2):506-513(in Chinese).
    [26] 潘文杰, 郭锦棠, 樊金杰, 等. 接枝改性聚丁二烯胶乳胶乳的制备及其在水泥基复合材料中的应用[J]. 复合材料学报, 2018, 35(4):973-979.

    PAN Wenjie, GUO Jintang, FAN Jinjie, et al. Preparation of graft modified polybutadiene latex latex and its application in cement matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(4):973-979(in Chinese).
    [27] 李悦, 朱金才, 吴玉生. 聚合物对超高韧性水泥基复合材料性能的影响[J]. 建筑材料学报, 2018, 21(1):26-32. doi: 10.3969/j.issn.1007-9629.2018.01.019

    LI Yue, ZHU Jincai, WU Yusheng. Effect of polymer on properties of ultra high toughness cementitious composites[J]. Journal of Building Materials,2018,21(1):26-32(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.01.019
    [28] 韩冬冬, 陈维灯, 钟世云. 乳胶粒径对聚合物改性水泥基材料性能的影响[J]. 建筑材料学报, 2017, 20(6):943-949. doi: 10.3969/j.issn.1007-9629.2017.06.019

    HAN Dongdong, CHEN Weideng, ZHONG Shiyun. Effect of latex particle size on properties of polymer modified cement-based materials[J]. Journal of Building Materials,2017,20(6):943-949(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.019
    [29] CHOI J Y, JOO M K, LHO B C. Effects of silica fume content and polymer-binder ratio on properties of ultrarapid-hardening polymer-modified mortars[J]. International Journal of Concrete Structures and Materials,2016,10:249-256.
    [30] 韩思聪, 白二雷, 郭创, 等. 苯丙乳液基水泥复合道面填缝料力学性能研究[J]. 硅酸盐通报, 2018, 37(11):3398-3404, 3409.

    HAN Sicong, BAI Erlei, GUO Chuang, et al. Research on mechanical properties of styrene-acrylic emulsion based cement composite pavement joint sealant[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3398-3404, 3409(in Chinese).
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  285
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-02-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回