留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料

顾升 王雪 徐国祺

顾升, 王雪, 徐国祺. 基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料[J]. 复合材料学报, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
引用本文: 顾升, 王雪, 徐国祺. 基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料[J]. 复合材料学报, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
GU Sheng, WANG Xue, XU Guoqi. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
Citation: GU Sheng, WANG Xue, XU Guoqi. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002

基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料

doi: 10.13801/j.cnki.fhclxb.20200210.002
基金项目: 中央高校基本科研业务费专项资金(2572017CB03)
详细信息
    通讯作者:

    徐国祺,博士,副教授,硕士生导师,研究方向为新能源材料 E-mail:xuguoqi_2004@126.com

  • 中图分类号: TB332;TM53

Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction

  • 摘要: 以纳米纤维素(CNF)、羧基化碳纳米管(CNTs—COOH)、铅笔石墨(PGr)、聚吡咯(PPy)为原料,通过真空抽滤、涂覆、氧化聚合等方法,同时基于氢键界面相互作用的原理,制备出具有石墨层结构的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料。结果表明,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料在平直、折叠和拉伸时不会断裂,展现出较强的力学性能,其拉伸强度达到28.90 MPa。亲水性CNF与CNTs—COOH构筑的多孔结构增强了离子和电子的扩散路径。PGr的加入有效增加了CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的导电路径,赋予其优良的导电性能。氧化聚合后得到的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的电导率达到5.403 S·cm−1。在1 mol·L−1 H2SO4溶液中,0.5 A·g−1电流密度下,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料具有521 F·g−1的高比电容量,且经过1 500次充放电循环后,其电容保持率高达68%。基于柔性电极优良的力学性能、电化学性能和导电性能,CNF-CNTs—COOH-PGr/PPy柔性电极复合材料具备成为柔性储能器件电极材料的基本特性。

     

  • 图  1  纳米纤维素(CNF)-羧基化碳纳米管(CNTs—COOH)-铅笔石墨(PGr)/聚吡咯(PPy)柔性电极复合材料的制备过程

    Figure  1.  Preparation process of nanocellulose(CNF)-carboxylated carbon nanotubes(CNTs—COOH)-pencil graphite(PGr)/polypyrrole (PPy) flexible electrode composite

    图  2  CNF和CNTs—COOH的FTIR图谱

    Figure  2.  FTIR spectra of CNF and CNTs—COOH

    图  3  CNF、CNTs、CNTs—COOH的TEM图像和CNF-CNTs—COOH复合物的SEM图像

    Figure  3.  TEM images of CNF, CNTs, CNTs—COOH and SEM image of CNF-CNTs—COOH complex

    图  4  超声30 min、静置6 h后CNTs和CNTs—COOH的水分散性对比

    Figure  4.  Comparison of water dispersibility of CNTs and CNTs—COOH after ultrasonic for 30 min standing for 6 h

    图  5  PPy包覆CNF-CNTs—COOH-PGr复合物过程机制

    Figure  5.  Process mechanism of PPy coated CNF-CNTs—COOH-PGr complex

    图  6  CNF-CNTs—COOH-PGr/PPy柔性电复合材料的数码照片

    Figure  6.  Digital photos of CNF-CNTs—COOH-PGr/PPy flexible electrode composite

    图  7  CNF-CNTs—COOH-PGr复合物和CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的应力-应变曲线

    Figure  7.  Stress-strain curves of CNF-CNTs—COOH-PGr complex and CNF-CNTs—COOH-PGr/PPy flexible electrode composite

    图  8  CNF-CNTs—COOH-PGr复合物(a)和PPy聚合不同时间的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的SEM图像((b)~(e))及CNF-CNTs—COOH-PGr/PPy柔性电极复合材料断面的SEM图像(f)(内置图为断面的放大SEM图像)

    Figure  8.  SEM images of CNF-CNTs—COOH-PGr complex(a) and CNF-CNTs—COOH-PGr/PPy flexible electrode composites with different PPy polymerization times((b)–(e)), SEM image of cross section of CNF-CNTs—COOH-PGr/PPy flexible electrode composite(f) (Inset is a magnified SEM image of the section)

    图  9  CNF-CNTs—COOH、CNF-CNTs—COOH-PGr复合物和CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的FTIR光谱

    Figure  9.  FTIR spectra of CNF-CNTs—COOH, CNF-CNTs—COOH-PGr complex and CNF-CNTs—COOH-PGr/PPy flexible electrode composite

    图  10  CNF-CNTs—COOH、CNF-CNTs—COOH-PGr复合物和CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的电导率

    Figure  10.  Conductivity of CNF-CNTs—COOH, CNF-CNTs—COOH-PGr complex and CNF-CNTs—COOH-PGr/PPy flexible electrode composites

    图  11  CNF-CNTs—COOH-PGr/PPy柔性电极复合材料充当导线点亮发光二极管(LED)的照片

    Figure  11.  Photograph of CNF-CNTs—COOH-PGr/PPy flexible electrode composite acting as a wire to illuminate light emitting diode (LED)

    图  12  CNF-CNTs—COOH-PGr复合物、CNF-CNTs—COOH/PPy和CNF-CNTs—COOH-PGr/PPy柔性电极复合材料在电流密度1 A·g−1的恒电流充放电(GCD)曲线

    Figure  12.  Galvanostatic charge-discharge(GCD) curves of CNF-CNTs—COOH-PGr complex, CNF-CNTs—COOH/PPy and CNF-CNTs—COOH-PGr/PPy flexible electrode composites at 1 A·g−1 current density

    图  13  电流密度0.5 A·g−1下不同聚合时间的CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的GCD曲线

    Figure  13.  GCD curves of CNF-CNTs—COOH-PGr/PPy flexible electrode composites at different polymerization times and 0.5 A·g−1 current density

    图  14  CNF-CNTs—COOH-PGr/PPy1柔性电极复合材料在电流密度为0.5~5 A·g−1下的GCD曲线

    Figure  14.  GCD curves of CNF-CNTs—COOH-PGr/PPy1 flexible electrode composite at current density of 0.5–5 A·g−1

    图  15  不同扫描速率下CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的循环伏安(CV)曲线

    Figure  15.  Cyclic voltammetry(CV) curves of CNF-CNTs—COOH-PGr/PPy flexible electrode composite at different scan rates

    图  16  CNF-CNTs—COOH-PGr复合物、CNF-CNTs—COOH/PPy和CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的Nyquist曲线

    Figure  16.  Nyquist curves of CNF-CNTs—COOH-PGr complex,CNF-CNTs—COOH/PPy and CNF-CNTs—COOH-PGr/PPy flexible electrode composite

    图  17  不同电流密度下CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的比电容量

    Figure  17.  Specific capacitance of CNF-CNTs—COOH-PGr/PPy flexible electrode composite at different current densities

    图  18  CNF-CNTs—COOH-PGr/PPy柔性电极复合材料循环稳定性曲线(内置图为1 485~1 500次循环的GCD曲线)

    Figure  18.  Cycle stability curve of CNF-CNTs—COOH-PGr/PPy flexible electrode composite (Inset is 1 485–1 500 circles GCD curve)

    表  1  不同聚合时间下CNF-CNTs—COOH-PGr/PPy柔性电极复合材料的样品标记

    Table  1.   Sample labeling of CNF-CNTs—COOH-PGr/PPy flexible electrode composites at different polymerization times

    Samplet/min
    CNF-CNTs—COOH0
    CNF-CNTs—COOH-PGr0
    CNF-CNTs—COOH/PPy0.530
    CNF-CNTs—COOH-PGr/PPy0.530
    CNF-CNTs—COOH-PGr/PPy160
    CNF-CNTs—COOH-PGr/PPy2120
    CNF-CNTs—COOH-PGr/PPy3240
    Note: t—Reaction time of PPy.
    下载: 导出CSV
  • [1] ZOU J D, ZHANG M, HUANG J R, et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor[J]. Advanced Energy Materials,2018,8(10):1702671-1702679. doi: 10.1002/aenm.201702671
    [2] ZHI L, ZHANG W L, DANG L Q, et al. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance[J]. Journal of Power Sources,2018,387:108-116. doi: 10.1016/j.jpowsour.2018.03.063
    [3] YANG P H, MAI W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [4] HUANG Y, LI H F, WANG Z F, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy,2016,22:422-438. doi: 10.1016/j.nanoen.2016.02.047
    [5] YUE Y, LIU N S, MA Y N, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [6] TAO J Y, LIU N S, RAO J Y, et al. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage[J]. Nanoscale,2014,6(24):15073-15079. doi: 10.1039/C4NR04819A
    [7] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy Environmental Science,2015,8(3):702-730. doi: 10.1039/C4EE03229B
    [8] DI J T, ZHANG X H, YONG Z Z, et al. Carbon-nanotube fibers for wearable devices and smart textiles[J]. Advanced Materials,2016,28(47):10529-10538. doi: 10.1002/adma.201601186
    [9] ZHOU H H, HAN G Y, XIAO Y M, et al. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors[J]. Journal of Power Sources,2014,263:259-267. doi: 10.1016/j.jpowsour.2014.04.039
    [10] XU Y X, LIN Z Y, HUANG X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7(5):4042-4049. doi: 10.1021/nn4000836
    [11] LV W, LI Z G, ZHOU G M, et al. Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram[J]. Advanced Functional Materials,2014,24(22):3456-3463. doi: 10.1002/adfm.201304054
    [12] 任丽, 韩阳. 聚吡咯/磷酸铁锂复合正极材料的制备与表征[J]. 复合材料学报, 2012, 29(5):41-46.

    REN Li, HAN Yang. Preparation and characterization of PPy/LiFePO<sub>4</sub> composite material as cathode[J]. Acta Materiae Compositae Sinica,2012,29(5):41-46(in Chinese).
    [13] 付长璟, 李爽, 宋春来, 等. 聚吡咯/氧化石墨复合材料的制备及其电容性能[J]. 复合材料学报, 2016, 33(3):572-579.

    FU Changjing, LI Shuang, SONG Chunlai, et al. Preparation of polypyrrole/graphite oxide composite and its capacitive properties[J]. Acta Materiae Compositae Sinica,2016,33(3):572-579(in Chinese).
    [14] ZHENG X Y, LV W, TAO Y, et al. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance[J]. Chemistry of Materials,2014,26(23):6896-6903. doi: 10.1021/cm503845q
    [15] HOU Y, ZHANG L, CHEN L Y, et al. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold[J]. Physical Chemistry Chemical Physics,2014,16(8):3523-3528. doi: 10.1039/c3cp54497d
    [16] LI Q, MAHMOOD N, ZHU J H, et al. Graphene and its composites with nanoparticles for electrochemical energy applications[J]. Nanotoday,2014,9(5):668-683. doi: 10.1016/j.nantod.2014.09.002
    [17] LU Z, CHAO Y F, GE Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [18] SUN J F, HUANG Y, FU C X, et al. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn[J]. Nano Energy,2016,27:230-237. doi: 10.1016/j.nanoen.2016.07.008
    [19] LEE H, KIM H, CHO M S, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications[J]. Electrochimica Acta,2011,56(22):7460-7466. doi: 10.1016/j.electacta.2011.06.113
    [20] ALCARAZ-ESPINOZA J J, OLIVEIRA H P. Flexible supercapacitors based on a ternary composite of polyaniline/polypyrrole/graphite on gold coated sandpaper[J]. Electrochimica Acta,2018,274:200-207. doi: 10.1016/j.electacta.2018.04.063
    [21] SONG Y, LIU T Y, YAO B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small,2017,13(16):1700067. doi: 10.1002/smll.201700067
    [22] ZHOU X, CHEN Q, WANG A, et al. Bamboo-like composites of V<sub>2</sub>O<sub>5</sub>/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors[J]. ACS Applied Materials Interfaces,2016,8(6):3776-3783. doi: 10.1021/acsami.5b10196
    [23] LI P, JIN Z, PENG L, et al. Stretchable all-gel-state fiber-shaped super- capacitors enabled by macromolecularly interconnected 3D graphene /nanostructured conductive polymer hydrogels[J]. Advanced Materials,2018,30(18):180012-180018.
    [24] WU C, ZHOU T Z, DU Y, et al. Strong bioinspired HPA-rGO nanocomposite films via interfacial interactions for flexible supercapacitors[J]. Nano Energy,2019,58:517-527. doi: 10.1016/j.nanoen.2019.01.055
    [25] HOU M J, XU M J, HU Y M, et al. Nanocellulose incorporated grapheme/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes[J]. Electrochimica Acta,2019,313:245-254. doi: 10.1016/j.electacta.2019.05.037
    [26] 刘馨月, 齐晓俊, 管宇鹏, 等. 纤维素纳米纤丝-还原氧化石墨烯/聚苯胺气凝胶柔性电极复合材料的制备与性能[J]. 复合材料学报, 2019, 36(7):1583-1590.

    LIU Xinyue, QI Xiaojun, GUAN Yupeng, et al. Preparation and properties of cellulose nanofiber-reduced graphene oxide/polyaniline composite aerogels as flexible electrodes[J]. Acta Materiae Compositae Sinica,2019,36(7):1583-1590(in Chinese).
    [27] IWAMOTO S, KAI W H, ISOGAI T, et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polymer Degradation and Stability,2010,95(8):1394-1398. doi: 10.1016/j.polymdegradstab.2010.01.017
    [28] BENHAMOU K, DUFRESNE A, MAGNIN A, et al. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time[J]. Carbohydrate Polymers,2014,99:74-83. doi: 10.1016/j.carbpol.2013.08.032
    [29] GAMELAS J A F, PEDROSA J, LOURENCO A F, et al. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment[J]. Micron,2015,72:28-33. doi: 10.1016/j.micron.2015.02.003
    [30] ZHU X L, WU G L, LU N, et al. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants[J]. Journal of Hazardous Materials,2017,324:272-280. doi: 10.1016/j.jhazmat.2016.10.057
    [31] CHINNAPPAN A, LEE J K Y, JAYATHILAKA W A D M,et al. Fabrication of MWCNT/Cu nanofibers via electro-spinning method and analysis of their electrical conductivity by four-probe method[J]. International Journal of Hydrogen Energy,2018,43(2):721-729. doi: 10.1016/j.ijhydene.2017.11.028
    [32] LIU P, WANG X, LI H D. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance[J]. Synthetic Metals,2013,181:72-78. doi: 10.1016/j.synthmet.2013.08.010
    [33] 李莉香, 刘永长, 耿新, 等. 氮掺杂碳纳米管的制备及其电化学性能[J]. 物理化学学报, 2011, 27(2):443-448. doi: 10.3866/PKU.WHXB20110225

    LI Lixiang, LIU Yongchang, GENG Xin, et al. Synhesin and electrochemical performance of nitrogen-doped carbon nanatubes[J]. Acta Physico-Chimica Sinica,2011,27(2):443-448(in Chinese). doi: 10.3866/PKU.WHXB20110225
    [34] LI Q Q, RENNECKAR S. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles[J]. Biomacromolecules,2011,12(3):650-659. doi: 10.1021/bm101315y
    [35] LI X G, LI A, HUANG M R, et al. Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nano composites and carbon nanoparticles[J]. The Journal of Physical Chemistry C,2010,114(45):19244-19255. doi: 10.1021/jp107435b
    [36] QU L T, SHI G Q, CHEN F E, et al. Electrochemical growth of polypyrrole microcontainers[J]. Macromolecules,2003,36(4):1063-1067. doi: 10.1021/ma021177b
    [37] HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO<sub>2</sub> for next generation supercapacitors[J]. Nano Letters,2006,6(12):2690-2695. doi: 10.1021/nl061576a
    [38] 吴中, 张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2):305-313.

    WU Zhong, ZHANG Xinbo. Design and preparation of electrode materials for supercapacitors with high specific capacitance[J]. Acta Physico-Chimica Sinica,2017,33(2):305-313(in Chinese).
    [39] CHEN J J, HUANG Y, LI C, et al. Synthesis of NiO@MnO<sub>2</sub> core/shell nanocomposites for supercapacitor application[J]. Applied Surface Science,2016,360:534-539. doi: 10.1016/j.apsusc.2015.10.187
    [40] UMESHBABU E, RAJESHKHANNA G, RAO G R. Urchin and sheaf-like NiCo<sub>2</sub>O<sub>4</sub> nanostructures: Synthesis and electrochemical energy storage application[J]. International Journal of Hydrogen Energy,2014,39(28):15627-15638. doi: 10.1016/j.ijhydene.2014.07.168
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  1423
  • HTML全文浏览量:  498
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-29
  • 网络出版日期:  2020-02-11
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回