留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能

周文英 张财华 李旭 张帆 张祥林

周文英, 张财华, 李旭, 等. 基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能[J]. 复合材料学报, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
引用本文: 周文英, 张财华, 李旭, 等. 基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能[J]. 复合材料学报, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
ZHOU Wenying, ZHANG Caihua, LI Xu, et al. Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
Citation: ZHOU Wenying, ZHANG Caihua, LI Xu, et al. Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001

基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能

doi: 10.13801/j.cnki.fhclxb.20200210.001
基金项目: 国家自然科学基金(51937007; 51577154)
详细信息
    通讯作者:

    周文英,博士,教授,博士生导师,研究方向为导热电子封装与电气绝缘聚合物电介质材料 E-mail:wyzhou2004@163.com

  • 中图分类号: TM

Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures

  • 摘要: 为降低硅粒子/聚偏氟乙烯(Si/PVDF)复合材料体系的介电损耗(tanδ)及提高其击穿强度(Eb),采用高温氧化及聚苯乙烯(PS)包覆法,制备出两种分别具有SiO2单壳及SiO2@PS双壳的Si@SiO2和Si@SiO2@PS核壳结构粒子。采用FTIR、XRD和TEM分析测试了核壳粒子的壳层结构。分析测试证明,Si粒子表面存在SiO2和PS壳层。结果表明,相比未改性Si/PVDF复合材料,SiO2外壳显著降低和抑制了Si@SiO2/PVDF复合材料的tanδ和漏导电流;PS层改进了Si/PVDF复合材料的界面相容性,促进其在基体中均匀分散。双壳结构Si@SiO2@PS/PVDF复合材料呈现出最低tanδ和最高Eb。Si@SiO2/PVDF和Si@SiO2@PS/PVDF复合材料介电性能的改善归因于Si表面SiO2及SiO2@PS绝缘界面层有效阻止了半导体Si粒子间的直接接触,极大抑制了损耗。此外,Si/PVDF复合材料相界面缺陷减少及界面相容性改善均有效降低了局部电场畸变,提高了体系的Eb。Si@SiO2@PS/PVDF复合材料在1 kHz下介电常数高达48,tanδ低至0.07,Eb约为6 kV/mm,在微电子器件及电力设备领域具有潜在的应用价值。

     

  • 图  1  Si、Si@SiO2、Si@SiO2@PS粒子的FTIR(a)和XRD(b)图谱

    Figure  1.  FTIR spectra(a) and XRD patterns(b) of Si, Si@SiO2 and Si@SiO2@PS particles

    图  2  核壳结构Si@SiO2粒子(a)和Si@SiO2@PS复合粒子(b)的TEM图像

    Figure  2.  TEM images of Si@SiO2 particles (a) and Si@SiO2@PS composite particles with core-shell structure (b)

    图  3  40wt% Si/PVDF(a)、40wt% Si@SiO2/PVDF(b)和40wt% Si@SiO2@PS/PVDF(c) 复合材料的SEM图像

    Figure  3.  SEM images of 40wt% Si/PVDF(a), 40wt% Si@SiO2/PVDF(b) and 40wt% Si@SiO2@PS/PVDF(c) composites

    图  4  Si/PVDF、Si@SiO2/PVDF、Si@SiO2@PS/PVDF复合材料的介电性能(内图分别为Si/PVDF复合材料介电常数渗流理论计算及不同结构的核壳粒子结构示意图)

    Figure  4.  Dielectric properties of Si/PVD SiO2/PVDF and Si@SiO2@PS/PVDF composites(Insets in Fig. 4 show the theoretical calculation diagram of permittivity of Si/PVDF composites and the schematic diagram of core-shell particles with different structures)

    图  5  Si、Si@SiO2和Si@SiO2@PS粒子在PVDF基体内的分布结构示意图

    Figure  5.  Schematic diagram of distribution structures of Si, Si@SiO2 and Si@SiO2@PS particles in PVDF matrix

    图  6  Si/PVDF、Si@SiO2/PVDF和Si@SiO2@PS/PVDF复合材料的击穿强度(Eb)(a)和Weibull分布曲线((b)~(d))

    Figure  6.  Dielectric breakdown strength(Eb)(a) and Weibull distribution curves((b)–(d)) of Si/PVDF, Si@SiO2/PVDF and Si@SiO2@PS/PVDF composites

  • [1] DANG Z M, ZHENG M S, ZHA J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12(13):1688-1701. doi: 10.1002/smll.201503193
    [2] WANG Z, HAN N M, WU Y, et al. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers[J]. Carbon,2017,123:385-394. doi: 10.1016/j.carbon.2017.07.079
    [3] ZHOU W Y, KOU Y J, YUAN M X, et al. Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties[J]. Composites Science and Technology,2019,181:107686. doi: 10.1016/j.compscitech.2019.107686
    [4] CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Materials,2016,26(3):447-455. doi: 10.1002/adfm.201503782
    [5] DANG Z M, WANG L, WANG H Y, et al. Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites[J]. Applied Physics Letters,2005,86(17):172905.
    [6] QI L, LEE B I, CHEN S, et al. High-dielectric-constant silver-epoxy composites as embedded dielectrics[J]. Advanced Materials,2005,17(14):1777-1781. doi: 10.1002/adma.200401816
    [7] HE F, LAU S, CHAN H L, et al. High dielectric percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates[J]. Advanced Materials,2009,21(6):710-715. doi: 10.1002/adma.200801758
    [8] ZHAO Y H, LUO L, TANG H F, et al. Preparation of high-k composites with low dielectric loss based on the double-layer coaxial structure of inorganic/polymer[J]. Journal of Applied Polymer Science,2018,135(21):46299. doi: 10.1002/app.46299
    [9] WANG L, DANG Z M. Carbon nanotube composites with high delectric constant at low percolation threshold[J]. Applied Physics Letters,2005,87(4):042903. doi: 10.1063/1.1996842
    [10] WU Y, LIN X, SHEN X, et al. Exceptional dielectric properties of chlorine-doped graphene oxide/poly(vinylidene fluoride) nanocomposites[J]. Carbon,2015,89:102-112. doi: 10.1016/j.carbon.2015.02.074
    [11] ZHOU W Y, GONG Y, TU L, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites[J]. Journal of Alloys <italic>&</italic> Compounds,2017,693:1-8.
    [12] WANG D, BAO Y, ZHA J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene[J]. ACS Applied Materials <italic>&</italic> Interfaces,2012,4(11):6273-6279. doi: 10.1021/am3018652
    [13] GONG Y, ZHOU W Y, WANG Z J, et al. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer[J]. Journal of Materials Science <italic>&</italic> Technology,2018,34(12):2415-2423.
    [14] LI Y, HUANG X, HU Z, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials <italic>&</italic> Interfaces,2011,3(11):4396-4403.
    [15] WEI H, WU Y, LUN N, et al. Preparation and photocatalysis of TiO<sub>2</sub> nanoparticles co-doped with nitrogen and lanthanum[J]. Journal of Materials Science,2004,39(4):1305-1308. doi: 10.1023/B:JMSC.0000013889.63705.f3
    [16] XIE L, HUANG X, HUANG Y, et al. Core@double-shell structured BaTiO<sub>3</sub>-polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Journal of Physical Chemistry C,2013,117(44):22525-22537. doi: 10.1021/jp407340n
    [17] XU X L, YANG C J, YANG J H, et al. Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide[J]. Composites Part B: Engineering,2017,109:91-100. doi: 10.1016/j.compositesb.2016.10.056
    [18] LI Q, HAN K, GADINSKI M R, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites[J]. Advanced Materials,2014,26(36):6244-6249. doi: 10.1002/adma.201402106
    [19] THAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092
    [20] XU H P, DANG Z M, JIANG M J, et al. Enhanced dielectric properties and positive temperature coeffcient effect in the binary polymer composites with surface modified carbon black[J]. Journal of Materials Chemistry,2008,18(2):229-234. doi: 10.1039/B713857A
    [21] LIU L P, LV F Z, ZHANG Y H, et al. Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO<sub>2</sub>@GO hybrids[J]. Composites Part A: Applied Science and Manufacturing,2017,99:41-47. doi: 10.1016/j.compositesa.2017.03.029
    [22] DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-672. doi: 10.1016/j.pmatsci.2011.08.001
  • 加载中
图(6)
计量
  • 文章访问数:  821
  • HTML全文浏览量:  313
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2020-01-06
  • 网络出版日期:  2020-02-10
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回