留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强箍筋约束超高性能混凝土柱轴压性能

邓宗才 姚军锁

邓宗才, 姚军锁. 高强箍筋约束超高性能混凝土柱轴压性能[J]. 复合材料学报, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002
引用本文: 邓宗才, 姚军锁. 高强箍筋约束超高性能混凝土柱轴压性能[J]. 复合材料学报, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002
DENG Zongcai, YAO Junsuo. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002
Citation: DENG Zongcai, YAO Junsuo. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002

高强箍筋约束超高性能混凝土柱轴压性能

doi: 10.13801/j.cnki.fhclxb.20200203.002
基金项目: 北京市教委科技重点项目 (KZ201810005008)
详细信息
    通讯作者:

    邓宗才,博士,教授,博士生导师,研究方向为超高性能混凝土及其结构 E-mail:dengzc@bjut.edu.cn

  • 中图分类号: TU375.3

Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups

  • 摘要: 通过5根高强箍筋约束超高性能混凝土(Ultra high performance concrete,UHPC)柱及4根普通箍筋约束UHPC柱的轴心受压试验,对其承载力、破坏形态、钢筋应变及应力-应变曲线进行了研究,并结合延性、韧性指数分析了体积配箍率、箍筋强度、箍筋间距及形式对约束UHPC轴压性能的影响。结果表明:所有约束柱均表现为延性破坏,高强箍筋可减轻约束UHPC的破坏程度;高体积率、小间距、形式复杂的高强箍筋约束UHPC,约束效率高,承载力及变形能力提高显著,轴压性能较理想;体积配箍率对轴压性能的影响程度大于箍筋强度;影响体积配箍率变化的因素中,箍筋间距对改善约束性能的贡献最大,依次是箍筋形式和直径;高强箍筋可有效约束UHPC,在提高约束UHPC强度、变形性能及残余承载力方面明显优于普通箍筋;纵筋微曲会加速保护层剥离,密配高强箍筋能有效延迟纵筋屈曲,显著提高约束性能;纵筋微曲会削弱高强箍筋对核心UHPC的约束效果,建议采用高强纵筋与高强箍筋组合。在试验的基础上给出了能较准确预测箍筋约束UHPC柱承载力的计算式。

     

  • 图  1  箍筋约束超高性能混凝土(UHPC)柱设计详图及应变片布置

    Figure  1.  Design details and strain gage locations of ultra-high performance concrete (UHPC) columns confined by stirrups

    图  2  钢纤维和含纤维UHPC坍落扩展度

    Figure  2.  Steel fibers and UHPC slump with fibers

    图  3  钢筋拉伸试验应力-应变曲线

    Figure  3.  Tension test stress-strain curves of steel reinforcement

    图  4  箍筋约束UHPC柱轴压试验装置及测点布置

    Figure  4.  Test machine and measuring points of UHPC columns confined by stirrups

    图  5  箍筋约束UHPC柱最终破坏情况

    Figure  5.  Final failure mode of UHPC columns confined by stirrups

    图  6  实测箍筋约束UHPC柱荷载-应变全曲线

    Figure  6.  Axial load-strain curves of UHPC columns confined by stirrups

    图  7  实测箍筋约束UHPC柱荷载-泊松比曲线

    Figure  7.  Load-poisson ratio curves of UHPC columns confined by stirrups

    图  8  实测箍筋约束UHPC柱纵筋、箍筋的应力-应变曲线

    Figure  8.  Load-strain curves of longitudinal reinforcement and stirrups of UHPC columns confined by stirrups

    图  9  箍筋约束UHPC柱延性(I10)、韧性指数(T)计算模型

    Figure  9.  Definitions of ductility (I10) and toughness (T) index of UHPC columns confined by stirrups

    图  10  核心区约束UHPC应力-应变全曲线计算方法

    Figure  10.  Calculation method of stress-strain curve of confined core UHPC

    图  11  箍筋强度对约束UHPC应力-应变曲线的影响

    Figure  11.  Effect of tie strength on the stress-strain curve of confined core UHPC

    图  12  箍筋间距对约束UHPC应力-应变曲线的影响

    Figure  12.  Effect of tie spacing on the stress-strain curve of confined core UHPC

    图  13  箍筋形式对约束UHPC应力-应变曲线的影响

    Figure  13.  Effect of tie configure on the stress-strain curve of confined core UHPC

    图  14  ρv·fyv对约束UHPC应力-应变曲线的影响

    Figure  14.  Effect of ρv·fyv on the stress-strain curve of confined core UHPC

    图  15  体积配箍率ρv对约束UHPC应力-应变曲线的影响

    Figure  15.  Effect of volume stirrups ratio ρv on the stress-strain curve of confined core UHPC

    图  16  约束UHPC fcc/fc0-Ie关系曲线

    Figure  16.  Relationship between fcc/fc0 and Ie of confined core UHPC

    图  17  箍筋约束UHPC柱承载力计算值与试验值比值关系

    Figure  17.  Ratio of calculated value of bearing capacity to experimental value for UHPC columns confined by stirrups

    表  1  箍筋约束UHPC柱设计参数

    Table  1.   Design parameters of UHPC columns confined by stirrups

    Column IDfcu/MPaStirrup
    d/mms/mmρv/%fyv/MPaCF
    HTRB630/UHPC(R) 143.0 10 80 2.1 723.45 R
    HRB400/UHPC(R) 153.9 10 80 2.1 491.68 R
    HRB400/UHPC(L)-1 143.0 10 60 4.7 491.68 L
    HRB400/UHPC(L)-2 143.0 10 80 3.5 491.68 L
    HTRB630/UHPC(L)-1 153.9 10 60 4.7 723.45 L
    HTRB630/UHPC(L)-2 153.9 10 80 3.5 723.45 L
    HTRB630/UHPC(L)-3 153.9 8 80 2.2 701.57 L
    HTRB630/UHPC(C) 153.9 10 80 4.6 723.45 C
    HRB400/UHPC(C) 143.0 10 80 4.6 491.68 C
    P 143.0
    Notes: fcu—Average value of measured cube compressive strength; d and s—Diameter and spacing of stirrup respectively; ρv and fyv—Volume stirrup ratio and the yield strength of stirrup respectively; CF—Stirrups configuration; R—Rectangular stirrup; L—Diamond-shaped composite stirrup; C—Diamond-shaped cross composite stirrup; P—Unreinforced UHPC column (both longitudinal and stirrup are not equipped). Such as, HTRB630/UHPC(L)-1 represents the UHPC column confined by diamond-shaped composite (L) high-strength (HTRB630) stirrup, and "−1" is only numbered to distinguish the specimens of the same type of stirrup with different stirrup ratios.
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportions of UHPC kg/m3

    WCMSFABFSSSSPSF
    180 500 150 150 200 1 200 20.5 145
    Notes: W—Water; C—Cement; MS—Microsilica; FA—Fly ash; BFS—Blast-furnace slag; SS—Silica sand; SP—Superplasticizer; SF—Steel fiber.
    下载: 导出CSV

    表  3  箍筋约束UHPC柱轴压试验结果

    Table  3.   Axial compression test results of UHPC columns confined by stirrups

    Column IDFmax/
    kN
    εc/
    fc0/
    MPa
    εco/
    fcc/
    MPa
    εcc/
    ε85/
    ε60/
    εc/
    εco
    fcc/
    fc0
    εcc/
    εco
    ε85/
    εco
    ε60/
    εco
    TI10
    HTRB630/UHPC(C) 7 134 3.56 104.86 3.17 157.98 5.20 6.64 17.80 1.12 1.51 1.64 2.10 5.62 0.70 8.13
    HTRB630/UHPC(L)-1 7 322 3.98 104.86 3.17 170.22 5.38 6.25 20.94 1.26 1.62 1.70 1.97 6.61 0.73 8.36
    HTRB630/UHPC(L)-2 6 886 3.74 104.86 3.17 153.36 4.72 7.15 16.34 1.18 1.46 1.49 2.26 5.16 0.71 8.06
    HTRB630/UHPC(L)-3 6 281 3.48 104.86 3.17 129.35 3.56 3.95 12.98 1.10 1.23 1.12 1.25 4.10 0.60 7.01
    HTRB630/UHPC(R) 5 984 3.40 97.44 3.12 120.43 3.41 3.92 10.95 1.09 1.24 1.09 1.26 3.51 0.60 6.89
    HRB400/UHPC(C) 6 189 4.02 97.44 3.12 132.50 4.86 8.35 1.29 1.36 1.56 2.68 0.74 8.24
    HRB400/UHPC(L)-1 6 513 3.81 97.44 3.12 144.72 5.15 6.81 15.90 1.22 1.49 1.65 2.19 5.10 0.69 8.02
    HRB400/UHPC(L)-2 5 971 3.44 97.44 3.12 128.29 4.44 6.28 14.13 1.10 1.32 1.42 2.02 4.53 0.67 7.40
    HRB400/UHPC(R) 6 072 3.43 104.86 3.17 121.68 3.48 3.67 8.62 1.08 1.16 1.10 1.16 2.72 0.56 6.45
    P 5 310 2.51 100.37 2.51
    Notes: Fmax and εc—Peak load of the columns and its corresponding axial strain respectively; fc0 and εc0—Peak stress and strain of unconfined UHPC and the calculation formula of εc0 shown in the literature [17] respectively ; fcc and εcc—Peak stress and strain of confined UHPC respectively; ε85 and ε60—Corresponding strain when fcc decreases by 15% and 40% respectively; T and I10—Toughness index and ductility index respectively.
    下载: 导出CSV
  • [1] 覃维祖, 曹峰. 一种超高性能混凝土—活性粉末混凝土[J]. 工业建筑, 1999, 29(4):16-18. doi: 10.3321/j.issn:1000-8993.1999.04.005

    QIN Weizu, CAO Feng. A new ultra-high performance concrete-reactive powder concrete[J]. Industrial Construction,1999,29(4):16-18(in Chinese). doi: 10.3321/j.issn:1000-8993.1999.04.005
    [2] 邓宗才, 姚军锁. 箍筋约束超高性能混凝土柱受压性能研究进展[J]. 建筑科学与工程学报, 2020, 37(1):14-25.

    DENG Zongcai, YAO Junsuo. Research progress on compressive behavior of stirrup-confined ultra-high performance concrete columns[J]. Journal of Architecture and Civil Engineering,2020,37(1):14-25(in Chinese).
    [3] 邓宗才, 姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究[J]. 工程力学, 2020, 37(5):120-128.

    DENG Zongcai, YAO Junsuo. The axial compression stress-strain model for ultra-high performance concrete columns confined by high-strength stirrups[J]. Engineering Mechanics,2020,37(5):120-128(in Chinese).
    [4] 周文峰, 鲁瑛. 约束混凝土文献综述[J]. 四川建筑科学研究, 2007, 33(3):144-146. doi: 10.3969/j.issn.1008-1933.2007.03.040

    ZHOU Wenfeng, LU Ying. The summarization of literature of confined concrete[J]. Sichuan Building Science,2007,33(3):144-146(in Chinese). doi: 10.3969/j.issn.1008-1933.2007.03.040
    [5] HOSINIEH M M, AOUDE H, COOK W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures,2015,99:388-401. doi: 10.1016/j.engstruct.2015.05.009
    [6] AARUP B, JENSEN L R, APS H C, et al. Slender CRC columns[J]. Nordic Concr Res,2005,34:80-97.
    [7] SUGANO S, KIMURA H, SHIRAI K. Study of new RC structures using ultra-high-strength fiber-reinforced concrete (UFC)-The challenge of applying 200 MPa UFC to earthquake resistant building structures[J]. Journal of Advanced Concrete Technology,2007,5(2):133-147. doi: 10.3151/jact.5.133
    [8] EMPELMANN M, TEUTSCH M, STEVEN G. Load-bearing behavior of centrically loading UHPFRC columns[C]// Proceedings of the Second International Symposium on Ultra High Performance Concrete. Kassel: University of Kassel, Germany, 2008: 521-528.
    [9] EMPELMANN M, TEUTSCH M, STEVEN G. Expanding the application range of RC-columns by the use of UHPC[C]// Tailor Made Concrete Structures. London: CRC Press, 2008: 461-468.
    [10] STEVEN G, EMPELMANN M. UHPFRC-columns with high-strength longitudinal reinforcement[J]. Betonund Stahlbetonbau,2014,109(5):344-354. doi: 10.1002/best.201300090
    [11] YANG X, ZOHREVAND P, MIRMIRAN A. Behavior of ultrahigh-performance concrete confined by steel[J]. Journal of Materials in Civil Engineering,2016,28(10):04016113. doi: 10.1061/(ASCE)MT.1943-5533.0001623
    [12] 唐昌辉, 刘冬明. 活性粉末混凝土柱轴心受压试验研究[J]. 中国科技论文, 2016, 11(1):7-11. doi: 10.3969/j.issn.2095-2783.2016.01.002

    TANG Changhui, LIU Dongming. Experimental study on reactive powder concrete columns under uniaxial compression[J]. China Sciencepaper,2016,11(1):7-11(in Chinese). doi: 10.3969/j.issn.2095-2783.2016.01.002
    [13] SHIN H O, MIN K H, MITCHELL D. Confinement of ultra-high-performance fiber reinforced concrete columns[J]. Composite Structures,2017,176:124-142. doi: 10.1016/j.compstruct.2017.05.022
    [14] SHIN H O, MIN K H, MITCHELL D. Uniaxial behavior of circular ultra-high-performance fiber-reinforced concrete columns confined by spiral reinforcement[J]. Construction and Building Materials,2018,168:379-393. doi: 10.1016/j.conbuildmat.2018.02.073
    [15] 吴炎海, 何雁斌, 杨幼华. 活性粉末混凝土(RPC200)的力学性能[J]. 福州大学学报(自然科学版), 2003, 31(5):598-602.

    WU Yanhai, HE Yanbin, YANG Youhua. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Science),2003,31(5):598-602(in Chinese).
    [16] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2007.

    GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse[M]. Beijing: Tsinghua University Press, 2007(in Chinese).
    [17] 郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2):369-376. doi: 10.3969/j.issn.1001-0505.2017.02.028

    GUO Xiaoyu, KANG Jingfu, ZHU Jinsong. Constitutive relationship of ultrahigh performance concrete under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition),2017,47(2):369-376(in Chinese). doi: 10.3969/j.issn.1001-0505.2017.02.028
    [18] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2011.

    Housing and Urban-rural Development of the People’s Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [19] 贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D]. 北京: 北京交通大学, 2013.

    JIA Fangfang. Experimental study on bond properties between steel bar and reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese).
    [20] 赵作周, 钱稼茹, 贺小岗, 等. 箍筋约束高强混凝土受压应力-应变本构关系[J]. 建筑结构学报, 2014, 35(5):96-103.

    ZHAO Zuozhou, QIAN Jiaru, HE Xiaogang, et al. Stress-strain relationship of stirrup-confined high-strength concrete[J]. Journal of Building Structures,2014,35(5):96-103(in Chinese).
    [21] 丁红岩, 刘源, 邱实. 高强箍筋约束高强混凝土轴心受压试验研究[J]. 建筑结构, 2015(12):7-12.

    DING Hongyan, LIU Yuan, QIU Shi. Experimental study on axial compression of high-strength concrete confined by high-strength stirrup[J]. Building Structure,2015(12):7-12(in Chinese).
    [22] SHEIKH S A, UZUMERI S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division,1982,108(12):2703-2722.
    [23] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [24] 史庆轩, 杨坤, 刘维亚, 等. 高强箍筋约束高强混凝土轴心受压力学性能试验研究[J]. 工程力学, 2012, 29(1):141-149.

    SHI Qingxuan, YANG Kun, LIU Weiya, et al. Experimental study on mechanical behavior of high strength concrete confined by high-strength stirrups under concentric loading[J]. Engineering Mechanics,2012,29(1):141-149(in Chinese).
    [25] 杨坤, 史庆轩, 赵均海, 等. 高强箍筋约束高强混凝土本构模型研究[J]. 土木工程学报, 2013, 46(1):34-41.

    YANG Kun, SHI Qingxuan, ZHAO Junhai, et al. Study on the constitutive model of high-strength concrete confined by high-strength stirrups[J]. China Civil Engineering Journal,2013,46(1):34-41(in Chinese).
    [26] RICHART F E. Reinforced concrete wall and column footings[J]. ACI Journal Proceedings,1948,45(10):97-127.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1376
  • HTML全文浏览量:  405
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-08
  • 录用日期:  2019-12-20
  • 网络出版日期:  2020-02-04
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回