留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制

杨贵荣 王宁 宋文明 李亚敏 马颖

杨贵荣, 王宁, 宋文明, 等. WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制[J]. 复合材料学报, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001
引用本文: 杨贵荣, 王宁, 宋文明, 等. WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制[J]. 复合材料学报, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001
YANG Guirong, WANG Ning, SONG Wenming, et al. Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001
Citation: YANG Guirong, WANG Ning, SONG Wenming, et al. Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001

WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制

doi: 10.13801/j.cnki.fhclxb.20200203.001
基金项目: 国家自然科学基金(51765035;51205178)
详细信息
    通讯作者:

    杨贵荣,博士,教授,博士生导师,研究方向为金属表面功能材料的制备与性能、摩擦磨损、腐蚀与防护及失效分析E-mail: yanggrming@lut.cn

  • 中图分类号: TB331

Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating

  • 摘要: 采用真空熔覆技术制备了WC-氧化石墨烯(GO)/Ni复合熔覆层,运用扫描电镜、能谱仪、X射线衍射仪观察并分析在不同温度下熔覆层内显微形貌的变化与物相组成。结果表明:在ZG45表面制备了组织致密、与基体形成良好冶金熔合的WC-GO/Ni复合熔覆层;熔覆层的微观结构组成从表面至基体依次是约1.5 mm厚的复合层、360 μm左右的过渡层、50 μm左右的扩散熔合层和100 μm左右的扩散影响层,其主要组成相有Cr7C3、FeNi3、WC、Cr23C6、Ni3Si、C、Fe7W6、γ-Ni固溶体等,FeNi3、Fe7W6分散在冶金熔合带,扩散影响区主要组织为珠光体;复合区的物相尺寸小于界面区的物相尺寸,熔覆层形成过程中复合区的金属颗粒变化先于界面区,凝固时熔化不完全的颗粒表面长出团簇物(Cr7C3/Cr23C6),随着保温长大逐渐变成针状物镶嵌在Ni基固溶体中。

     

  • 图  1  粉末的形貌

    Figure  1.  Morphologies of powders

    图  2  WC-氧化石墨烯 (GO)/Ni复合熔覆层的XRD图谱

    Figure  2.  XRD pattern of WC-graphene oxide(GO)/Ni composite coating

    图  3  熔覆温度1060℃时WC-GO/Ni复合熔覆层的截面形貌

    Figure  3.  Morphologies of WC-GO/Ni composite coating at cladding temperature of 1060℃

    图  4  熔覆温度900℃时WC-GO/Ni复合熔覆层的形貌

    Figure  4.  Morphologies of WC-GO/Ni composite coating at a cladding temperature of 900℃

    图  5  熔覆温度为960℃时WC-GO/Ni复合熔覆层的形貌

    Figure  5.  Morphologies of WC-GO/Ni composite coating at cladding temperature of 960℃

    图  6  粉末烧结过程模型

    Figure  6.  Powder sintering process model

    图  7  烧结颈形成过程模型

    R—Particle radius; σ—Sintering stress; ρ—Curvature radius of sintering neck; ρ'—Circle with radius ρ; Cv0—Vacancy concentration in sintered pellets; Cv—Vacancy concentration in a circle with radius ρ

    Figure  7.  Sintered neck formation process model

    表  1  Ni基合金粉末的化学成分

    Table  1.   Chemical composition of the Ni-based alloy powders

    ElementCBSiCrFeNi
    Mass fraction/wt% 0.7-1.1 3.0-4.0 3.5-5.0 15.0-17.0 ≤5.0 Bal.
    下载: 导出CSV
  • [1] 王智慧, 杨爱弟, 贺定勇, 等. 真空熔覆镍基合金涂层中碳化钨颗粒转变行为[J]. 稀有金属材料与工程, 2008, 37(10):1869-1871. doi: 10.3321/j.issn:1002-185X.2008.10.039

    WANG Z H, YANG A D, HE D Y, et al. Transformation behavior of tungsten carbide particles in vacuum cladding nickel-based alloy coatings[J]. Rare Metal Materials and Engineering,2008,37(10):1869-1871(in Chinese). doi: 10.3321/j.issn:1002-185X.2008.10.039
    [2] ESO O, FANG Z, GRIFFO A. Liquid phase sintering of functionally graded WC-Co composites[J]. International Journal of Refractory Metals & Hard Materials,2005,23(2):233-241. doi: 10.1016/j.ijrmhm.2005.04.017
    [3] ESO O, FANG Z, GRIFFO A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co[J]. International Journal of Refractory Metals & Hard Materials,2008,25(4):286-292.
    [4] 杨贵荣, 高大文, 宋文明, 等. 45钢表面Ni/WC复合熔覆层的形成机制[J]. 材料研究学报, 2019, 33(2):87-94. doi: 10.11901/1005.3093.2018.510

    YANG G R, GAO D W, SONG W M, et al. Formation mechanism of Ni/WC composite cladding layer on 45 steel surface[J]. Chinese Journal of Materials Research,2019,33(2):87-94(in Chinese). doi: 10.11901/1005.3093.2018.510
    [5] YANG G R, HUANG C P, SONG W M, et al. Microstructure character-istics of Ni/WC composite cladding coatings[J]. International Journal of Refractory Metals & Hard Materials,2016,23(2):184-192. doi: 10.1007/s12613-016-1226-z
    [6] BANSAL A, ZAFAR S, SHARMA A K. Microstructure and abrasive wear performance of Ni-WC composite microwave clad[J]. Journal of Materials Engineering & Performance,2015,24(10):1-9.
    [7] PAATSCH W. Energy turnaround-A challenge for surface technology[J]. Transactions of the IMF,2016,94(5):228-230. doi: 10.1080/00202967.2016.1209295
    [8] 刘喜明. Ni基合金+WC激光熔覆层再加热时的显微组织变化特性[J]. 应用激光, 2006, 26(6):381-384. doi: 10.3969/j.issn.1000-372X.2006.06.006

    LIU X M. Microstructure changes of Ni-based alloy+WC laser cladding layer during reheating[J]. Applied Laser,2006,26(6):381-384(in Chinese). doi: 10.3969/j.issn.1000-372X.2006.06.006
    [9] GAO Y, LUOB H, HE K J, et al. Mechanical properties and microstructure of WC-Fe-Ni-Co cemented carbides prepared by vacuum sintering[J]. Vacuum,2017,143:271-282. doi: 10.1016/j.vacuum.2017.06.028
    [10] GAO Y, LUOB H, HE K J, et al. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides[J]. Ceramics International,2018,44(2):2030-2041. doi: 10.1016/j.ceramint.2017.10.148
    [11] ELKHOSHKHANY N, HAFNWAY A, KHALED A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating[J]. Journal of Alloys and Compounds,2017,695:1505-1514. doi: 10.1016/j.jallcom.2016.10.290
    [12] WANG J Y, PENG C, TANG J, et al. Friction and wear characteristics of hot-pressed sintered NiCr-WC-Al2O3 compo-sites with a certain amount of graphene at different temperatures[J]. Journal of Alloys and Compounds,2018,737:515-529. doi: 10.1016/j.jallcom.2017.11.101
    [13] SIMUNOVIC K, SARIC T, SIMUNOVIC G. Different approaches to the investigation and testing of the Ni-based self-fluxing alloy coatings a review. Part 1. General facts, wear and corrosion investigations[J]. Tribology Transactions,2014,57(6):955-979. doi: 10.1080/10402004.2014.927547
    [14] PARK Y S, BAE D H. Assessment of the crack growth characteristics at the low fatigue limit of a multi-pass welded Ni-based alloy 617[J]. Journal of Mechanical Science and Technology,2014,28(4):1251-1256. doi: 10.1007/s12206-014-0116-4
    [15] GUO C, CHEN J M, ZHOU J C, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J]. Surface & Coatings Technology,2012,206(8-9):2064-2071. doi: 10.1016/j.surfcoat.2011.06.005
    [16] GUO C, ZHOU J S, CHEN J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings[J]. Wear,2011,270(7):492-498. doi: 10.1016/j.wear.2011.01.003
    [17] 叶宏, 喻文新, 雷临萍, 等. H13钢表面激光熔覆Ni基涂层的组织与耐磨性能[J]. 特种铸造及有色合金, 2016, 36(7):690-693.

    YE H, YU W X, LEI L P, et al. Microstructure and wear resistance of laser cladding Ni-based coatingon H13 steel surface[J]. Special Casting & Nonferrous Alloys,2016,36(7):690-693(in Chinese).
    [18] MAHMOUDI B, TURY B, HAGER C H, et al. Effects of black oxide and a WC-C coating on the micropitting of SAE 52100 bearing steel[J]. Tribology Letters,2015,58(2):20-26. doi: 10.1007/s11249-015-0494-5
    [19] 王盘鑫. 粉末冶金学[M]. 北京: 冶金工业出版社, 2005.

    WANG P X. Powder metallurgy[M]. Beijing: Metallurgical Industry Press, 2005(in Chinese).
    [20] 杨柳, 苗媛媛, 刘镇波. 氧化石墨烯复合材料及其性能研究[J]. 中国胶粘剂, 2018, 27(6):42-47.

    YANG L, MIAO Y Y, LIU Z B. Study on graphene oxide composites and their properties[J]. China Adhesives,2018,27(6):42-47(in Chinese).
    [21] 崔忠圻, 覃耀春. 金属学与热处理[M]. 第2版. 北京: 机械工业出版社, 2007.

    CUI Z Q, TAN Y C. Metallography and heat treatment[M]. 2nd Ed. Beijing: China Machine Press, 2007(in Chinese).
    [22] 潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 2011.

    PAN J S, TONG J M, TIAN M B. Material science foundation[M]. Beijing: Tsinghua University Press, 2011(in Chinese).
    [23] 袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征[J]. 材料工程, 2013(11):12-19. doi: 10.3969/j.issn.1001-4381.2013.11.003

    YUAN Y L, LI Z G. Dissolving and precipitating characteristics of WC and carbides in the Ni60A+WC graded coating[J]. Journal of Materials Engineering,2013(11):12-19(in Chinese). doi: 10.3969/j.issn.1001-4381.2013.11.003
    [24] 王智慧, 杨爱弟, 张田, 等. 真空熔覆WC颗粒增强复合涂层中WC溶解行为的研究[J]. 材料工程, 2008(9):59-62, 66. doi: 10.3969/j.issn.1001-4381.2008.09.015

    WANG Z H, YANG A D, ZHANG T, et al. Dissolution behavior of WC in WC reinforced composite coatings[J]. Journal of Materials Engineering,2008(9):59-62, 66(in Chinese). doi: 10.3969/j.issn.1001-4381.2008.09.015
    [25] ZHANG Z, LIU H X, ZHANG X W, et al. Dissolution behavior of WC reinforced particles on carbon steel surface during laser cladding process[J]. Advanced Materials Research,2012,430-432:137-141. doi: 10.4028/www.scientific.net/AMR.430-432.137
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  289
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2019-12-20
  • 网络出版日期:  2020-02-04
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回