留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算

张广泰 曹银龙 李瑞祥 张路杨 陈勇

张广泰, 曹银龙, 李瑞祥, 等. 聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算[J]. 复合材料学报, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
引用本文: 张广泰, 曹银龙, 李瑞祥, 等. 聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算[J]. 复合材料学报, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
ZHANG Guangtai, CAO Yinlong, LI Ruixiang, et al. Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
Citation: ZHANG Guangtai, CAO Yinlong, LI Ruixiang, et al. Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001

聚丙烯-钢纤维/混凝土柱大偏心受压承载力计算

doi: 10.13801/j.cnki.fhclxb.20200201.001
基金项目: 国家自然科学基金(51968070)
详细信息
    通讯作者:

    张广泰,教授,博士生导师,研究方向为工程材料与结构抗震 E-mail:zgtlxh@126.com

  • 中图分类号: TU528.58

Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading

  • 摘要: 对270个聚丙烯纤维掺量(体积分数)分别为0vol%、0.1vol%、0.2vol%、0.3vol%、0.4vol%、0.5vol%、钢纤维掺量(体积分数)分别为0vol%、0.5vol%、1vol%、1.5vol%、2vol%的聚丙烯-钢纤维/混凝土试块进行立方体抗压试验、轴心抗压试验和劈裂抗拉试验,基于复合材料力学理论,考虑纤维的取向系数、长度有效系数和界面黏结系数,对其建立强度预测模型并进行机制分析,同时选取掺量分别为0vol%、0.1vol%、0.3vol%的聚丙烯纤维、掺量分别为0vol%、1.5vol%的钢纤维制作6根聚丙烯-钢纤维/混凝土柱,对其进行大偏心受压试验,在强度预测模型的基础上进行承载力计算,提出聚丙烯-钢纤维/混凝土承载力计算方法。结果表明:钢纤维对聚丙烯-钢纤维/混凝土立方体抗压强度、轴心抗压强度和劈裂抗拉强度均有提高;聚丙烯纤维可提高聚丙烯-钢纤维/混凝土的劈裂抗拉强度,但不能提高聚丙烯-钢纤维/混凝土的抗压强度;聚丙烯-钢混杂纤维加入混凝土柱可有效提高其极限承载力。

     

  • 图  1  聚丙烯纤维

    Figure  1.  Polypropylene fiber

    图  2  钢纤维

    Figure  2.  Steel fiber

    图  3  聚丙烯-钢纤维/混凝土柱配筋

    Figure  3.  Reinforcement drawing of polypropylene-steel fiber/concrete column

    图  4  聚丙烯-钢纤维/混凝土柱大偏心受压试验

    Figure  4.  Large eccentric compression test of polypropylene-steel fiber/concrete column

    图  5  位移计及应变片布置

    Figure  5.  Layout of displacement meter and strain gauge

    图  6  纤维在混凝土中的取向模型

    Figure  6.  Orientation model of fibers in concrete

    图  7  混凝土-纤维界面黏结力与纤维拉应力模型

    Figure  7.  Concrete-fiber interfacial bonding force and fiber tensile stress model

    图  8  混凝土中不同长度纤维的应力分布

    Figure  8.  Stress distribution of fibers of different lengths in concrete

    图  9  聚丙烯-钢纤维/混凝土劈裂抗拉强度拟合模型

    Figure  9.  Splitting tensile strength fitting model of polypropylene-steel fiber/concrete

    图  10  聚丙烯-钢纤维/混凝土抗压强度拟合模型

    Figure  10.  Compressive strength fitting model of polypropylene-steel fiber/concrete

    图  11  钢筋本构模型

    Figure  11.  Constitutive model of steel bar

    图  12  聚丙烯-钢纤维/混凝土拉-压本构模型

    Figure  12.  Tension-compression constitutive model of polypropylene-steel fiber/concrete

    图  13  聚丙烯-钢纤维/混凝土柱不同阶段正截面受力情况

    Figure  13.  Stress of normal section of polypropylene-steel fiber/concrete column at different stages

    表  1  锂渣的化学成分

    Table  1.   Chemical composition of lithium slag wt%

    SiO2Al2O3Fe2O3CaOMgOSO3K2ONa2OLi2O
    54.3919.831.407.980.248.300.140.260.77
    下载: 导出CSV

    表  2  聚丙烯纤维和钢纤维的主要参数

    Table  2.   Parameters of polypropylene fibers and steel fibers

    Fiber typeLength/mmDiameter/μmDensity/(g·cm−3)Elasticity modulus /GPaTensile strength/MPa
    Steel fiber333007.82210≥600
    Polypropylene fiber19330.91>3.5530
    下载: 导出CSV

    表  3  混凝土配比

    Table  3.   Mix proportions of concrete kg·m–3

    WaterCementSandCobblestoneWater reducerLithium slag
    C50 concrete composition1505306561 1705.3
    Concrete composition used in test1504246561 1705.3106
    下载: 导出CSV

    表  4  聚丙烯-钢纤维/混凝土劈裂抗拉强度试验值及计算值

    Table  4.   Test values and calculation values of splitting tensile strength of polypropylene-steel fiber/concretes

    Test numberVolume fraction of polypropylene fiber/vol%Volume fraction of steel fiber/vol%Test value of split tensile strength/MPaCalculated value of split tensile strength/MPaTest value/Calculated value
    P0S0 0 0 2.92 2.92 1.00
    P0S1 0 0.5 3.51 3.59 0.98
    P0S2 0 1 4.19 4.27 0.98
    P0S3 0 1.5 4.84 4.94 0.98
    P0S4 0 2 5.68 5.61 1.01
    P1S0 0.1 0 3.07 2.97 1.03
    P1S1 0.1 0.5 3.72 3.64 1.02
    P1S2 0.1 1 4.30 4.31 1.00
    P1S3 0.1 1.5 5.11 4.99 1.02
    P1S4 0.1 2 5.74 5.66 1.01
    P2S0 0.2 0 3.14 3.02 1.04
    P2S1 0.2 0.5 3.44 3.69 0.93
    P2S2 0.2 1 4.11 4.36 0.94
    P2S3 0.2 1.5 5.01 5.04 0.99
    P2S4 0.2 2 5.88 5.71 1.03
    P3S0 0.3 0 3.03 3.07 0.99
    P3S1 0.3 0.5 4.02 3.74 1.07
    P3S2 0.3 1 4.17 4.41 0.95
    P3S3 0.3 1.5 4.78 5.09 0.94
    P3S4 0.3 2 5.97 5.76 1.04
    P4S0 0.4 0 3.46 3.12 1.11
    P4S1 0.4 0.5 4.22 3.79 1.11
    P4S2 0.4 1 4.38 4.46 0.98
    P4S3 0.4 1.5 5.17 5.13 1.01
    P4S4 0.4 2 6.12 5.81 1.05
    P5S0 0.5 0 3.35 3.16 1.06
    P5S1 0.5 0.5 3.49 3.84 0.91
    P5S2 0.5 1 4.03 4.51 0.89
    P5S3 0.5 1.5 5.05 5.18 0.97
    P5S4 0.5 2 6.03 5.86 1.03
    下载: 导出CSV

    表  5  聚丙烯-钢纤维/混凝土立方体抗压强度试验值及计算值

    Table  5.   Test values and calculated values of cube compressive strength of polypropylene-steel fiber/concrete

    Test numberVolume fraction of polypropylene fiber/vol%Volume fraction of
    steel fiber/vol%
    Test value of cube compressive strength/MPaCalculated value of cube compressive strength/MPaTest value/
    Calculated value
    P0S0 0 0 62.8 62.80 1.00
    P0S1 0 0.5 64.2 67.96 0.94
    P0S2 0 1 69.0 73.12 0.94
    P0S3 0 1.5 78.3 78.28 1.00
    P0S4 0 2 84.1 83.44 1.01
    P1S0 0.1 0 58.2 61.45 0.95
    P1S1 0.1 0.5 69.2 66.61 1.04
    P1S2 0.1 1 74.2 71.77 1.03
    P1S3 0.1 1.5 80.5 76.93 1.05
    P1S4 0.1 2 86.0 82.09 1.05
    P2S0 0.2 0 61.2 60.10 1.02
    P2S1 0.2 0.5 66.3 65.26 1.02
    P2S2 0.2 1 69.1 70.42 0.98
    P2S3 0.2 1.5 74.8 75.58 0.99
    P2S4 0.2 2 82.4 80.74 1.02
    P3S0 0.3 0 60.0 58.76 1.02
    P3S1 0.3 0.5 62.0 63.91 0.97
    P3S2 0.3 1 70.4 69.07 1.02
    P3S3 0.3 1.5 77.3 74.23 1.04
    P3S4 0.3 2 80.3 79.39 1.01
    P4S0 0.4 0 59.2 57.41 1.03
    P4S1 0.4 0.5 62.5 62.57 1.00
    P4S2 0.4 1 68.7 67.73 1.01
    P4S3 0.4 1.5 69.5 72.88 0.95
    P4S4 0.4 2 77.2 78.04 0.99
    P5S0 0.5 0 58.1 56.06 1.04
    P5S1 0.5 0.5 64.1 61.22 1.05
    P5S2 0.5 1 65.5 66.38 0.99
    P5S3 0.5 1.5 69.3 71.54 0.97
    P5S4 0.5 2 70.8 76.70 0.92
    下载: 导出CSV

    表  6  聚丙烯-钢纤维/混凝土轴心抗压强度试验值及计算值

    Table  6.   Test values and calculated values of axial compressive strength of polypropylene-steel fiber/concretes

    Test
    number
    Volume fraction of polypropylene fiber/vol%Volume fraction of steel fiber/vol%Test value of axial compressive strength/MPaCalculated value of axial compressive strength/MPaTest value/
    Calculated value
    P0S0 0 0 43.3 43.30 1.00
    P0S1 0 0.5 47.7 47.13 1.01
    P0S2 0 1 50.4 50.97 0.99
    P0S3 0 1.5 55.7 54.80 1.02
    P0S4 0 2 58.9 58.63 1.00
    P1S0 0.1 0 42.8 42.64 1.00
    P1S1 0.1 0.5 51.6 46.47 1.11
    P1S2 0.1 1 52.4 50.31 1.04
    P1S3 0.1 1.5 57.5 54.14 1.06
    P1S4 0.1 2 60.1 57.97 1.04
    P2S0 0.2 0 38.8 41.98 0.92
    P2S1 0.2 0.5 51.0 45.81 1.11
    P2S2 0.2 1 51.0 49.65 1.03
    P2S3 0.2 1.5 53.3 53.48 1.00
    P2S4 0.2 2 55.8 57.31 0.97
    P3S0 0.3 0 43.5 41.32 1.05
    P3S1 0.3 0.5 48.1 45.15 1.07
    P3S2 0.3 1 49.7 48.99 1.01
    P3S3 0.3 1.5 51.0 52.82 0.97
    P3S4 0.3 2 53.0 56.65 0.94
    P4S0 0.4 0 39.6 40.66 0.97
    P4S1 0.4 0.5 47.3 44.49 1.06
    P4S2 0.4 1 50.7 48.33 1.05
    P4S3 0.4 1.5 50.3 52.16 0.96
    P4S4 0.4 2 54.7 55.99 0.98
    P5S0 0.5 0 38.2 40.00 0.96
    P5S1 0.5 0.5 45.7 43.83 1.04
    P5S2 0.5 1 47.3 47.67 0.99
    P5S3 0.5 1.5 50.4 51.50 0.98
    P5S4 0.5 2 52.5 55.33 0.95
    下载: 导出CSV

    表  7  聚丙烯-钢纤维/混凝土柱极限承载力试验值及计算值

    Table  7.   Test values and calculation values of ultimate bearing capacity of polypropylene-steel fiber/concrete column

    Test
    number
    Volume fraction of
    polypropylene
    fiber/vol%
    Volume fraction
    of steel
    fiber/vol%
    Equivalent
    compression
    zone height/mm
    Test value
    of bearing
    capacity/kN
    Calculated value
    of bearing
    capacity/kN
    Test value/
    Calculated
    value
    P0S00080.43564.6529.20.94
    P1S000.00181.60572.0561.40.98
    P3S000.00384.00600.2603.51.01
    P0S30.015078.95638.4576.80.91
    P1S30.0150.00179.81654.2605.00.93
    P3S30.0150.00381.58651.7609.50.94
    下载: 导出CSV
  • [1] 徐礼华, 夏冬桃, 夏广政, 等. 钢纤维和聚丙烯纤维对高强混凝土强度的影响[J]. 武汉理工大学学报, 2007, 29(4):58-60, 98. doi: 10.3321/j.issn:1671-4431.2007.04.018

    XU Lihua, XIA Dongtao, XIA Guangzheng, et al. Effect of steel fiber and polypropylene fiber on the strength of high strength concrete[J]. Journal of Wuhan University of Technology,2007,29(4):58-60, 98(in Chinese). doi: 10.3321/j.issn:1671-4431.2007.04.018
    [2] 高丹盈, 赵军, 汤寄予. 掺有纤维的高强混凝土劈拉性能试验研究[J]. 土木工程学报, 2005, 38(7):21-26. doi: 10.3321/j.issn:1000-131X.2005.07.005

    GAO Danying, ZHAO Jun, TANG Jiyu. An experimental study on the behavior of fiber reinforced high-strength concrete under splitting tension[J]. China Civil Engineering Journal,2005,38(7):21-26(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.07.005
    [3] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6):956-961. doi: 10.3969/j.issn.1007-9629.2017.06.021

    PAN Huimin, MA Yunchao. Impact resistance of steel fiber reinforced concrete and its mechanism of crack resistance and toughening[J]. Journal of Building Materials,2017,20(6):956-961(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.021
    [4] 李传习, 聂洁, 石家宽, 等. 纤维类型对混凝土抗压强度和弯曲韧性的增强效应及变异性的影响[J]. 土木与环境工程学报(中英文), 2019, 41(2):147-158.

    LI Chuanxi, NIE Jie, SHI Jiakuan, et al. Effect of fiber type on compressive strength and flexural toughness of concrete and analysis of variability[J]. Journal of Civil and Environmental Engineering,2019,41(2):147-158(in Chinese).
    [5] 赵秋山, 徐慎春, 刘中宪. 钢纤维增强超高性能混凝土抗压性能的细观数值模拟[J]. 复合材料学报, 2018, 35(6):1661-1673.

    ZHAO Qiushan, XU Shenchun, LIU Zhongxian. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1661-1673(in Chinese).
    [6] 赵纪生, 陶夏新, 师黎静, 等. 钢纤维混凝土弯压构件承载力试验与理论分析[J]. 土木工程学报, 2005, 38(3):12-16. doi: 10.3321/j.issn:1000-131X.2005.03.003

    ZHAO Jishen, TAO Xiaxin, SHI Lijin, et al. Experimental and theoretical studies on the bearing capacities of steel-fiber reinforced structural members under compressive bending[J]. China Civil Engineering Journal,2005,38(3):12-16(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.03.003
    [7] 徐礼华, 黄乐, 韦翠梅, 等. 钢-聚丙烯混杂纤维混凝土柱抗震承载力试验研究[J]. 建筑结构学报, 2014, 35(8):95-103.

    XU Lihua, HUANG Le, WEI Cuimei, et al. Experimental Tests of seismic bearing capacity of steel-polypropylene hybrid fiber reinforced concrete columns[J]. Journal of Building Structures,2014,35(8):95-103(in Chinese).
    [8] 朱海堂, 程晟钊, 高丹盈, 等. BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论[J]. 复合材料学报, 2018, 35(12):3313-3323.

    ZHU Haitang, CHENG Shengzhao, GAO Danyin, et al. Exprimental and theoretical study on the flexural capacity on high-strength concrete beams reinforced with BFRP bars and steel fiber[J]. Acta Materiae Compositae Sinica,2018,35(12):3313-3323(in Chinese).
    [9] TOKGOZ S, DUNDAR C, TANRIKULU A K. Experimental behaviour of steel fiber high strength reinforced concrete and composite columns[J]. Journal of Constructional Steel Research,2012,74:98-107. doi: 10.1016/j.jcsr.2012.02.017
    [10] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13∶2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13∶2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [11] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of mechanical properties of ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [12] GANESAN N, INDIRA P V, SABEENA M V. Bond stress slip response of bars embedded in hybrid fiber reinforced high performance concrete[J]. Construction and Building Materials,2014,50:108-115. doi: 10.1016/j.conbuildmat.2013.09.032
    [13] 中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS 38∶2004[S]. 北京: 中国计划出版社, 2005.

    China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures: CECS 38∶2004[S]. Beijing: China Planning Press, 2005(in Chinese).
    [14] 李秋义, 樊红, 赵景海. 三维乱向分布钢纤维方向效能系数的理论值[J]. 哈尔滨建筑大学学报, 1998, 31(1):83-86.

    LI Qiuyi, FAN Hong, ZHAO Jinghai. Theoretical value of efficiency coefficient of three dimensional random distribution steel fiber direction[J]. Journal of Harbin University of Civil Engineering and Architecture,1998,31(1):83-86(in Chinese).
    [15] 慕儒, 马艳奉, 李辉, 等. 定向钢纤维混凝土中的钢纤维分布X-ray CT分析[J]. 电子显微学报, 2015, 34(6):487-491. doi: 10.3969/j.issn.1000-6281.2015.06.007

    MU Ru, MA Yanfeng, LI Hui, et al. Analysis of the distribution of steel fiber in aligned steel fiber reinforced concrete using digital X-ray CT scanning[J]. Journal of Chinese Electron Microscopy Society,2015,34(6):487-491(in Chinese). doi: 10.3969/j.issn.1000-6281.2015.06.007
    [16] 俞家欢, 刘琼阳. 水泥基复合材料中纤维拉拔的变位约束细观力学模型[J]. 复合材料学报, 2008, 25(5):147-150. doi: 10.3321/j.issn:1000-3851.2008.05.024

    YU Jiahuan, LIU Qiongyang. Meso-scale variable engagement model for single fiber reinforced concrete under uniaxial tension[J]. Acta Materiae Compositae Sinica,2008,25(5):147-150(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.024
    [17] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8):1935-1948.

    LUO Hongling, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica,2019,36(8):1935-1948(in Chinese).
    [18] 王力, 徐礼华, 邓方茜, 等. 波纹型钢纤维-混杂纤维混凝土界面粘结性能[J/OL]. 建筑材料学报:1-15 [2020-08-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1323.009.html.

    WANG Li, XU Lihua, DENG Fangqian, et al. The bonding performance of corrugated steel fiber-hybrid fiber concrete matrix interface[J]. Journal of Building Materials:1-15 [2020-08-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1323.009.html(in Chinese).
    [19] 李秋义, 李家和, 袁杰. SFRC兼有阻裂作用的复合理论[J]. 哈尔滨建筑大学学报, 2002, 35(4):81-83, 107.

    LI Qiuyi, LI Jiahe, YUAN Jie. Composite theory of SFRC accompanied with action of crack arrest[J]. Journal of Harbin University of Civil Engineering and Architecture,2002,35(4):81-83, 107(in Chinese).
    [20] 郑建岚, 郑作樵. 钢纤维钢筋高强混凝土柱的变形与延性计算[J]. 工程力学, 1999, 16(1):56-66.

    ZHENG Jianlan, ZHENG Zuoqiao. Calculation of deformation and ductility of steel fiber reinforced high strength concrete columns[J]. Engineering Mechanics,1999,16(1):56-66(in Chinese).
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  372
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2020-01-13
  • 网络出版日期:  2020-02-02
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回