留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为

丁春香 潘明珠 杨舒心 梅长彤

丁春香, 潘明珠, 杨舒心, 等. 基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为[J]. 复合材料学报, 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
引用本文: 丁春香, 潘明珠, 杨舒心, 等. 基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为[J]. 复合材料学报, 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
DING Chunxiang, PAN Mingzhu, YANG Shuxin, et al. Interfacial mechanical behavior of wood fiber/high density polyethylene composites based on digital image correlation[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
Citation: DING Chunxiang, PAN Mingzhu, YANG Shuxin, et al. Interfacial mechanical behavior of wood fiber/high density polyethylene composites based on digital image correlation[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001

基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为

doi: 10.13801/j.cnki.fhclxb.20200122.001
基金项目: 国家自然科学基金(31670556);南京林业大学杰出青年项目(NLJQ2015-02);江苏省“青蓝工程”;江苏省研究生科研与实践创新计划项目(KYCX19_1085)
详细信息
    通讯作者:

    潘明珠,教授,博士生导师,研究方向为先进生物质复合材料 E-mail:mzpan@njfu.edu.cn

    梅长彤,教授,博士生导师,研究方向为木质复合材料 E-mail:mei@njfu.edu.cn

  • 中图分类号: TB332

Interfacial mechanical behavior of wood fiber/high density polyethylene composites based on digital image correlation

  • 摘要: 以木纤维/高密度聚乙烯(WF/HDPE)复合材料界面应变为研究对象,采用数字图像相关技术(DIC)探究WF(质量分数为10wt%~40wt%)及改性聚磷酸铵(mAPP)阻燃剂(质量分数为10wt%~25wt%)对WF/HDPE复合材料应变分布及传递的演变规律,并结合力学性能测试和SEM对其拉伸性能、冲击性能、界面结合进行分析。结果表明:随着WF添加量从10wt%增至30wt%,WF/HDPE复合材料应变传递较为平稳,由受力两端向复合材料轴中心均匀传递,当WF添加量为30wt%时,高应变在复合材料上约1/2区域得到了有效传递,此时,复合材料的拉伸强度和冲击强度分别达21.5 MPa和10.22 kJ/m2。但当WF添加量增加至40wt%时,WF/HDPE复合材料的拉伸承载端部出现应力集中,阻碍了其内部应变的均匀传递。mAPP阻燃剂加剧了WF与HDPE界面间的脱粘行为,削弱了WF与HDPE之间的机械啮合作用力。当mAPP阻燃剂添加量从10wt%增加至25wt%时,WF/HDPE复合材料开始出现多个分散的高应变区域,全场应变传递出现不规则分布。当mAPP阻燃剂添加量达25wt%时,WF/HDPE复合材料应变分布呈两极化趋势,导致复合材料的拉伸强度和冲击强度分别降低为15.5 MPa和5.49 kJ/m2

     

  • 图  1  木纤维/高密度聚乙烯(WF/HDPE)复合材料的制备和表征示意图

    Figure  1.  Schematic illustration of preparation and characterization of WF/HDPE composites ((a)Compression molding; (b)Digital image correlation(DIC) technique)

    图  2  改性聚磷酸铵(mAPP)阻燃剂的TEM图像

    Figure  2.  TEM image of modified ammonium polyphosphate(mAPP) flame retardant

    图  3  mAPP添加量对WF/HDPE复合材料极限氧指数(LOI)的影响

    Figure  3.  Effect of mAPP mass fraction on limited oxygen index(LOI) of WF/HDPE composites

    图  4  WF/HDPE和mAPP-WF/HDPE复合材料拉伸断面的SEM图像

    Figure  4.  SEM images of fractured surfaces of WF/HDPE and mAPP-WF/HDPE composites

    图  5  WF添加量对WF/HDPE复合材料力学性能的影响

    Figure  5.  Effect of WF mass fraction on mechanical properties of WF/HDPE composites

    图  6  mAPP添加量对mAPP-WF/HDPE复合材料力学性能的影响

    Figure  6.  Effect of mAPP mass fraction on mechanical properties of mAPP-WF/HDPE composites

    图  7  WF添加量对WF/HDPE复合材料轴向应变传递的影响

    Figure  7.  Axial strain transferring of WF/HDPE composites with different mass fractions of WF

    图  8  mAPP添加量对mAPP-30WF/HDPE复合材料轴向应变传递的影响

    Figure  8.  Axial strain transferring of mAPP-30WF/HDPE composites with different mass fractions of mAPP

    表  1  木纤维/高密度聚乙烯(WF/HDPE)复合材料组分配比

    Table  1.   Mass fractions of components of wood fiber/high density polyethylene(WF/HDPE) composites

    SampleMass fraction of HDPE/wt%Mass fraction of wood fiber/wt%Mass fraction of mAPP/wt%
    10WF/HDPE 90 10
    20WF/HDPE 80 20
    30WF/HDPE 70 30
    40WF/HDPE 60 40
    10mAPP-30WF/HDPE 60 30 10
    15mAPP-30WF/HDPE 55 30 15
    20mAPP-30WF/HDPE 50 30 20
    25mAPP-30WF/HDPE 45 30 25
    Note: mAPP—Modified ammonium polyphosphate.
    下载: 导出CSV
  • [1] KUMAR V, TYAGI L, SINHA S. Wood flour-reinforced plastic composites: A review[J]. Reviews in Chemical Engineering,2011,27(5-6):253-264.
    [2] CLEMONS C. Wood-plastic composites in the United States: The interfacing of two industries[J]. Forest Products Journal,2002,52(6):10-18.
    [3] MATUANA L M, STARK N M. The use of wood fibers as reinforcements in composites[M]//FARUK O, SAIN M. Biofiber reinforcements in composite materials. Woodhead Publishing, 2015: 648-688.
    [4] 朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1791-1799.

    ZHU Lingbo, LI Xingong, YANG Kai, et al. Performance enhancement of straw/acrylonitrile-butadiene-styrene composites modified by several different kinds of modifiers[J]. Acta Materiae Compositae Sinica,2018,35(7):1791-1799(in Chinese).
    [5] CHOTIRAT L, CHAOCHANCHAIKUL K, SOMBATSOMPOP N. On adhesion mechanisms and interfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites[J]. International Journal of Adhesion and Adhesives,2007,27(8):669-678. doi: 10.1016/j.ijadhadh.2007.02.001
    [6] 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHANG Qingfa, YANG Keyan, CAI Hongzhen, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [7] BENGTSSON M, OKSMAN K. Silane crosslinked wood plastic composites: Processing and properties[J]. Composites Science and Technology,2006,66(13):2177-2186. doi: 10.1016/j.compscitech.2005.12.009
    [8] XIE Y, XIAO Z, GRÜNEBERG T, et al. Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites[J]. Composites Science and Technology,2010,70(13):2003-2011. doi: 10.1016/j.compscitech.2010.07.024
    [9] 王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.

    WANG Qingwen, YI Xin, SHEN Jing. Tailoring wood-plastic composites for furniture production: Possibilities and opportunities[J]. Journal of Forestry Engineering,2016,1(3):1-8(in Chinese).
    [10] JIANG S, YANG Y, GE S, et al. Preparation and properties of novel flame-retardant PBS wood-plastic composites[J]. Arabian Journal of Chemistry,2018,11(6):844-857. doi: 10.1016/j.arabjc.2017.12.023
    [11] KIM N K, DUTTA S, BHATTACHARYYA D. A review of flammability of natural fibre reinforced polymeric composites[J]. Composites Science and Technology,2018,162:64-78. doi: 10.1016/j.compscitech.2018.04.016
    [12] 杨鑫, 李学敏, 王奉强, 等. 木质素-木粉/高密度聚乙烯复合材料的制备及阻燃性能[J]. 复合材料学报, 2020, 37(3):530-538.

    YANG Xin, LI Xuemin, WANG Fengqiang, et al. Preparation and flame retardancy of lignin-wood fiber/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2020,37(3):530-538(in Chinese).
    [13] 徐兵, 梅长彤, 潘明珠, 等. 核壳结构木塑复合材料抗紫外老化性能试验[J]. 林业工程学报, 2017, 2(2):33-38.

    XU Bing, MEI Changtong, PAN Mingzhu, et al. Ultraviolet weathering of HDPE/wood-flour composites with core-shell structure[J]. Journal of Forestry Engineering,2017,2(2):33-38(in Chinese).
    [14] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A,1921,221(582-593):163-198.
    [15] 杨守禄, 姬宁, 黄安香, 等. 木塑复合材料界面调控及其表征技术研究进展[J]. 化工新型材料, 2018, 46(11):25-30.

    YANG Shoulu, JI Ning, HUANG Anxiang, et al. Literature overview on interface control and characterization technique of wood-plastic composite[J]. New Chemical Materials,2018,46(11):25-30(in Chinese).
    [16] YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments,1981,14(11):1270-1273. doi: 10.1088/0022-3735/14/11/012
    [17] BARILE C, CASAVOLA C, PAPPALETTERA G, et al. Characterization of adhesive bonded CFRP laminates using full-field digital image stereo-correlation and finite element analysis[J]. Composites Science and Technology,2019,169:16-25. doi: 10.1016/j.compscitech.2018.10.032
    [18] CATALANOTTI G, CAMANHO P P, XAVIER J, et al. Measurement of resistance curves in the longitudinal failure of composites using digital image correlation[J]. Composites Science and Technology,2010,70(13):1986-1993. doi: 10.1016/j.compscitech.2010.07.022
    [19] JIANG J W, NI F J. Evaluation of fatigue property of asphalt mixtures based on digital image correlation method[J]. Journal of Southeast University (English Edition),2017,33(2):216-223.
    [20] 时金娜, 赵燕茹, 郝松, 等. 基于DIC技术的高温后混凝土变形性能[J]. 建筑材料学报, 2019, 22(4):584-591.

    SHI Jinna, ZHAO Yanru, HAO Song, et al. Deformation behavior of concrete under uniaxial compression after high temperature by DIC technology[J]. Journal of Building Materials,2019,22(4):584-591(in Chinese).
    [21] MCGINNIS M J, PESSIKI S, TURKER H. Application of three-dimensional digital image correlation to the core-drilling method[J]. Experimental Mechanics,2005,45(4):359. doi: 10.1007/BF02428166
    [22] 李婧宇, 朱飞鹏, 雷冬. 三维DIC在铸铁拉伸试验中的应变测量精度研究[J]. 力学季刊, 2015, 36(3):434-441.

    LI Jingyu, ZHU Feipeng, LEI Dong. Study on strain measurement accuracy in tensile test for cast iron using three-dimensional digital image correlation[J]. Chinese Quarterly of Mechanics,2015,36(3):434-441(in Chinese).
    [23] 姜益军. 散斑检测技术在复合材料测试中的应用研究[D]. 南京: 东南大学, 2006.

    JIANG Yijun. Speckle metrology for testing of composite material[D]. Nanjing: Southeast University, 2006(in Chinese).
    [24] SRETENOVIC A, MÜLLER U, GINDL W. Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry[J]. Composites Part A: Applied Science and Manufacturing,2006,37(9):1406-1412. doi: 10.1016/j.compositesa.2005.06.018
    [25] SCHWARZKOPF M, MUSZYNSKI L. Strain distribution and load transfer in the polymer-wood particle bond in wood plastic composites[J]. Holzforschung,2015,69(1):53-60. doi: 10.1515/hf-2013-0243
    [26] SCHWARZKOPF M, MUSZYŃSKI L, HAMMERQUIST C C, et al. Micromechanics of the internal bond in wood plastic composites: Integrating measurement and modeling[J]. Wood Science and Technology,2017,51(5):997-1014. doi: 10.1007/s00226-017-0934-5
    [27] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为第2部分: 室温试验: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Plastic: Determination of burning by oxygen index Part 2: Ambient-temperature test: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2010(in Chinese).
    [28] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2007(in Chinese).
    [29] 中国国家标准化管理委员会. 建筑模板用木塑复合板: GB/T 29500—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Wood-plastic composite boards for concrete-form: GB/T 29500—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [30] 王潇舷, 金祖权, 姜玉丹, 等. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(8):2690-2696.

    WANG Xiaoxian, JIN Zuquan, JIANG Yudan, et al. Analysis of stress in concrete induced by corrosion of reinforcing bar based on DIC and strain test[J]. Materials Reports,2019,33(8):2690-2696(in Chinese).
    [31] ZHANG D S, LUO M, AROLA D D. Displacement/strain measurements using an optical microscope and digital image correlation[J]. Optical Engineering,2006,45(3):033605. doi: 10.1117/1.2182108
    [32] GUO X, CAO J, PENG Y, et al. Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage[J]. Materials and Design,2016,89:1325-1334. doi: 10.1016/j.matdes.2015.10.068
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  314
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2019-12-18
  • 网络出版日期:  2020-01-22
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回