留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字图像相关技术在复合材料加筋曲板压缩试验中的应用

阳奥 陈普会 孔斌 甘建 杨家勇

阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10): 2439-2451. doi: 10.13801/j.cnki.fhclxb.20200121.002
引用本文: 阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10): 2439-2451. doi: 10.13801/j.cnki.fhclxb.20200121.002
YANG Ao, CHEN Puhui, KONG Bin, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2439-2451. doi: 10.13801/j.cnki.fhclxb.20200121.002
Citation: YANG Ao, CHEN Puhui, KONG Bin, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2439-2451. doi: 10.13801/j.cnki.fhclxb.20200121.002

数字图像相关技术在复合材料加筋曲板压缩试验中的应用

doi: 10.13801/j.cnki.fhclxb.20200121.002
基金项目: 江苏高校优势学科建设工程资助项目;国防基础科研计划(A0520131001)
详细信息
    通讯作者:

    陈普会,博士,教授,博士生导师,研究方向为复合材料结构设计 E-mail:phchen@nuaa.edu.cn

  • 中图分类号: TB332

Application of digital image correlation technology in compression test of stringer stiffened composite curved panels

  • 摘要: 对复合材料自动铺丝和手工铺丝两种T型加筋曲板进行了单轴压缩试验,采用基于数字图像相关技术(Digital image correlation, DIC)的三维光学测量方法对该型加筋曲板的局部屈曲及后屈曲波形进行实时监测,并与传统应变、位移测量结果进行了对比分析。试验结果表明:DIC能够准确捕捉整个试验过程中的位移场,使用DIC设备观测到的屈曲模态与应变片数据反映的波形具有良好的一致性;不同于传统测量方法,DIC能够准确捕捉蒙皮在后屈曲阶段的屈曲模态转换的全过程;利用DIC技术能够对试验不同时间节点(即不同载荷水平)的屈曲模态进行清晰、直观的观测,因而能够较准确地获得结构的屈曲载荷,该载荷与由应变-载荷曲线确定的屈曲载荷相比,误差小于5%。采用ABAQUS有限元软件对试验过程进行了数值仿真分析,并通过与试验结果的对比表明了计算结果、DIC测量结果与传统方法测量结果三者具有良好的一致性。

     

  • 图  1  复合材料加筋曲板试件示意图

    Figure  1.  Schematics of the curved stiffened composite panel

    图  2  微机屏显式液压试验机

    Figure  2.  Micro-screen hydraulic testing machine

    图  3  三维数字图像相关(DIC)技术的光学测量系统

    Figure  3.  Optical measurement system of 3D digital image correlation(DIC)

    图  4  使用DIC监测的复合材料加筋曲板试件的前期准备过程

    Figure  4.  Pre-test preparations for curved stiffened composite panel specimens monitored by DIC

    图  5  复合材料加筋曲板试件应变片测点分布

    Figure  5.  Distribution of measurement points on curved stiffened composite panel specimens

    图  6  ZT7H/QY9611复合材料加筋曲板试验载荷-位移曲线

    Figure  6.  Load-displacement curves of the test ZT7H/QY9611 curved stiffened composite panel specimens

    图  7  DIC监测到的蒙皮面外位移场

    Figure  7.  Out-of-plane displacement field of the skin monitored by the DIC

    图  8  ZT7H/QY9611复合材料加筋曲板试件典型破坏模式

    Figure  8.  Typical failure modes of ZT7H/QY9611 curved stiffened composite panel specimens

    图  9  由DIC和位移计测得的蒙皮中心面外位移的对比

    Figure  9.  Comparison of out-of-plane displacements in the center of skin measured by DIC and displacement sensor

    图  10  DIC和位移计的测量结果偏差(蒙皮中心的面外位移)

    Figure  10.  Deviation of measurement results between DIC and displacement sensor (Out-of-plane displacements in the center of skin)

    图  11  由DIC和位移计测得的试件端部轴向压缩位移的对比

    Figure  11.  Comparison of end shortenings measured by DIC and displacement sensor

    图  12  DIC和位移计的测量结果偏差(试件端部位移)

    Figure  12.  Deviation of measurement results between DIC and displacement sensor (End shortenings of the specimens)

    图  13  T-3和T-4试件的载荷位移曲线及屈曲波形

    Figure  13.  Load-shortening curves and deformation patterns of T-3 and T-4 specimens

    图  14  T-3和T-4的关键测点的应变-载荷曲线

    Figure  14.  Strain-load curves of critical measurement points of T-3 and T-4

    图  15  复合材料T型加筋曲板有限元模型的网格划分

    Figure  15.  Finite element mesh for the model of the T-stiffened composite curved panels

    图  16  复合材料T型加筋曲板有限元模型的边界条件

    Figure  16.  Boundary conditions for the model of the T-stiffened composite curved panels

    图  17  有限元计算过程中动能与内能的比值

    Figure  17.  Ratio of kinetic energy to internal energy during finite element calculation

    图  18  计算和试验的载荷-位移曲线

    Figure  18.  Computed and experimental load-displacement curves

    图  19  蒙皮中心面外位移计算结果与试验结果

    Figure  19.  Computed and experimental results of out-of-plane displacements in the center of skin

    表  1  复合材料加筋曲板试验矩阵

    Table  1.   Test specimen matrix of curved stiffened composite panels

    Group No.Type of stringerNumber of stringersManufacturing methodNumber
    1(T1-T3) “T” 4 Automatic fiber placement(AFP) 3
    2(T4-T6) Hand-layup 3
    下载: 导出CSV

    表  2  ZT7H/QY9611试件的材料参数

    Table  2.   Material properties of ZT7H/QY9611

    E1/MPaE2/MPaν12G12/MPaXT/MPaXC/MPaYT/MPaYC/MPaS/MPa
    125 000 10 400 0.31 6 120 1 500 824 27.9 52.3 95
    Notes: E1—Longitudinal modulus; E2—Transverse modulus; ν12—In-plane Poisson’s ratio; G12—In-plane shear modulus; XT—Longitudinal tensile strength; XC—Longitudinal compressive strength; YT—Transverse tensile strength; YC—Transverse compressive strength; S—In-plane shear strength.
    下载: 导出CSV

    表  3  ZT7H/QY9611复合材料加筋曲板试件铺层信息

    Table  3.   Lay-ups of ZT7H/QY9611 curved stiffened composite panel specimens

    Group No.RegionThickness/mmLay-up
    1 Skin 2.32 [45/0/−45/90/45/0/−45/0]S
    Stiffener 3.19 [45/0/−45/90/45/0/−45/90/45/0/−45]S
    2 Skin 2.32 [45/0/−45/90/45/0/−45/0]S
    Stiffener 3.19 [45/0/−45/90/45/0/−45/90/45/0/−45]S
    下载: 导出CSV

    表  4  ZT7H/QY9611复合材料加筋曲板试件屈曲波形监测方法

    Table  4.   Measurement methods of ZT7H/QY9611 curved stiffened composite panel specimens

    Group No.Specimen No.Method
    1 T-1 Method 2
    T-2 Method 2
    T-3 Method 1
    2 T-4 Method 1
    T-5 Method 2
    T-6 Method 2
    Notes: Method 1—Optical measurement system of 3D digital image correlation (DIC) method; Method 2—Strain gauges method.
    下载: 导出CSV

    表  5  屈曲前T-3和T-4试件轴向刚度对比

    Table  5.   Comparison of stiffness of T-3 and T-4 specimens before buckling

    Specimen No.Data sources for displacementsData sources for loadsStiffnessVarianceDeviation/%
    T-3 DIC Built-in sensor 227.9 0.9969 4.5
    Displacement sensor 218.1 0.9998
    T-4 DIC 244.2 0.9985 4.5
    Displacement sensor 233.7 0.9993
    下载: 导出CSV

    表  6  自动铺丝和手工铺丝两组复合材料加筋曲板试件屈曲载荷、极限载荷对比

    Table  6.   Comparison of buckling load and ultimate load between two groups of curved stiffened composite panels manufactured by AFP or hand

    Group No.Specimen No.Buckling load/kNAverage valueUltimate load/kNAverage valueAverage deviation/%
    1 T-2 216 228 292 296.5 30.0
    T-3 240 301
    2 T-4 238 241 317 310 28.6
    T-5 240 303
    T-6 245 310
    Average deviation/% −5.7 −4.4
    下载: 导出CSV

    表  7  两种测量方法的屈曲载荷、屈曲模态对比

    Table  7.   Comparison of buckling loads and buckling modes between the two measurement methods

    Specimen No.From DICFrom strain-load curves
    Buckling loadBuckling modeBuckling loadBuckling mode
    T-3 238(−0.83%) 240 There are two half waves between stiffeners, which is consistent with the results from DIC, but the progress of the mode transition caused by secondary instability is hard to determine.
    T-4 246(3.36%) 238
    下载: 导出CSV

    表  8  计算和试验的结果对比

    Table  8.   Comparison of calculation results with experimental results

    ExperimentCalculationError/%
    Buckling load/kN 242.0 243.5 0.62
    Displacement at buckling/mm 1.085 1.101 1.47
    Ultimate load/kN 310.0 304.0 −1.94
    Displacement at collapse/mm 1.866 1.813 −2.84
    下载: 导出CSV

    表  9  计算的屈曲模态和DIC测量结果的对比

    Table  9.   Comparison of computed buckling modes with the results from DIC

    Buckling mode and transition of the mode
    Calculation
    DIC
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compo-sitae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] 葛建彪. 复合材料加筋壁板稳定性及承载能力分析[D]. 南京: 南京航空航天大学, 2010.

    GE Jianbiao. Stability and load-carrying capacity analysis of stiffened composite panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [3] STEVENS K A, RICCI R, DAVIES G A O. Buckling and postbuckling of composite structures[J]. Composites,1995,26(3):189-199. doi: 10.1016/0010-4361(95)91382-F
    [4] 王平安, 矫桂琼, 王波, 等. 复合材料加筋板在剪切载荷下的屈曲特性研究[J]. 机械强度, 2009, 31(1):78-82. doi: 10.3321/j.issn:1001-9669.2009.01.006

    WANG Pingan, JIAO Guiqiong, WANG Bo, et al. Buckling performance analysis of stiffened composite plate under shear loading[J]. Journal of Mechanical Strength,2009,31(1):78-82(in Chinese). doi: 10.3321/j.issn:1001-9669.2009.01.006
    [5] KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials,2014,21(2):359-376. doi: 10.1007/s10443-013-9337-4
    [6] ABRAMOVICH H, WELLER T. Buckling and postbuckling behavior of laminated composite stringer stiffened curved panels under axial compression: Experiments and design guidelines[J]. Journal of Mechanics of Materials and Structures,2009,4(7):1187-1207.
    [7] 张浩宇, 何宇廷, 冯宇, 等. 先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J]. 航空材料学报, 2016, 36(4):55-63. doi: 10.11868/j.issn.1005-5053.2016.4.008

    ZHANG Haoyu, HE Yuting, FENG Yu, et al. Buckling and post-buckling performance of advanced composite stiffened panel under compression[J]. Journal of Aeronautical Materials,2016,36(4):55-63(in Chinese). doi: 10.11868/j.issn.1005-5053.2016.4.008
    [8] 徐荣章, 凌晓涛, 贾利勇. 成型工艺对复合材料帽型加筋板轴压特性的影响[J]. 材料工程, 2018, 46(4):152-157. doi: 10.11868/j.issn.1001-4381.2015.000378

    XU Rongzhang, LING Xiaotao, JIA Liyong. Effect of forming process on compression characteristics of composite hat-stiffened panels[J]. Journal of Materials Engineering,2018,46(4):152-157(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.000378
    [9] 冯宇, 何宇廷, 安涛, 等. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5):81-88. doi: 10.11868/j.issn.1001-4381.2015.05.014

    FENG Yu, HE Yuting, AN Tao, et al. Influence of hygrothermal environment on compressive buckling and post-buckling performance of aero composite stiffened panel[J]. Journal of Materials Engineering,2015,43(5):81-88(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.05.014
    [10] 赵燕茹, 郝松, 王磊, 等. 基于数字图像相关的钢纤维增强水泥基复合材料的冲击损伤特性[J]. 复合材料学报, 2018, 35(5):299-305.

    ZHAO Yanru, HAO Song, WANG Lei, et al. Impact damage characteristics of steel fiber reinforced cement matrix composites based on digital image correlation[J]. Acta Materiae Compositae Sinica,2018,35(5):299-305(in Chinese).
    [11] MCCORMICK N, LORD J. Digital image correlation[J]. Materials Today,2010,13(12):52-54. doi: 10.1016/S1369-7021(10)70235-2
    [12] ORTEU Jeanjosé. Image correlation for shape, motion and deformation measurements[M]. New York: Springer, 2009: 81-116.
    [13] PAN B, QIAN K, XIE H, et al. Two-dimensional digital image correlation for in-plane displacement and strain mea-surement: A review[J]. Measurement Science & Technology,2009,20(6):062001.
    [14] REU P L. Uncertainty quantification for 3D digital image correlation[M]// Imaging Methods for Novel Materials and Challenging Applications. Volume 3. New York: Springer, 2013.
    [15] ZAPPA E, MAZZOLENI P, MATINMANESH A. Uncertainty assessment of digital image correlation method in dynamic applications[J]. Optics & Lasers in Engineering,2014,56(56):140-151.
    [16] SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques,2015,39(1):21-29. doi: 10.1111/ext.12005
    [17] HACK E, LIN X, PATTERSON E A, et al. A reference material for establishing uncertainties in full-field displacement measurements[J]. Measurement Science and Technology,2015,26(7):075004. doi: 10.1088/0957-0233/26/7/075004
    [18] ZIMMERMANN R, KLEIN H, KLING A. Buckling and postbuckling of stringer stiffened fibre composite curved panels-Tests and computations[J]. Composite Structures,2006,73(2):150-161. doi: 10.1016/j.compstruct.2005.11.050
    [19] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures,2018,196:135-154. doi: 10.1016/j.compstruct.2018.05.015
    [20] KOLANU N R, PRAKASH S S, RAMJI M. Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation[J]. Ocean Engineering,2016,114:290-302. doi: 10.1016/j.oceaneng.2016.01.034
    [21] KANKERI P, MAHIDHAR P K G, PRAKASH S S, et al. Experimental study on behavior of GFRP stiffened panels under compression[C]//International Conference of Experimental Mechanics. 2015.
    [22] FEATHERSTON C A, MORTIMER J, EATON M J, et al. The dynamic buckling of stiffened panels-A study using high speed digital image correlation[J]. Applied Mechanics and Materials,2010,24-25:331-336. doi: 10.4028/www.scientific.net/AMM.24-25.331
    [23] KASHFUDDOJA M, PRASATH R G R, RAMJI M. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis[J]. Optics and Lasers in Engineering,2014,62:17-30. doi: 10.1016/j.optlaseng.2014.04.019
  • 加载中
图(19) / 表(9)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  327
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回