留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟

朱德举 汤兴

朱德举, 汤兴. 基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟[J]. 复合材料学报, 2020, 37(10): 2561-2571. doi: 10.13801/j.cnki.fhclxb.20200121.001
引用本文: 朱德举, 汤兴. 基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟[J]. 复合材料学报, 2020, 37(10): 2561-2571. doi: 10.13801/j.cnki.fhclxb.20200121.001
ZHU Deju, TANG Xing. Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2561-2571. doi: 10.13801/j.cnki.fhclxb.20200121.001
Citation: ZHU Deju, TANG Xing. Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2561-2571. doi: 10.13801/j.cnki.fhclxb.20200121.001

基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟

doi: 10.13801/j.cnki.fhclxb.20200121.001
基金项目: 国防科技创新特区项目(19-H863-03-ZT-003-033-01);湖南省重点研发计划项目(2017 GK2130);湖湘高层次人才聚集工程-创新人才(2018RS3057)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生研究、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析 E-mail: dzhu@hnu.edu.cn

  • 中图分类号: Q66

Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell

  • 摘要: 个体防护装甲的发展对提高单兵作战能力具有重要意义,基于仿生研究可以为设计高性能装甲提供新的思路。犰狳外壳由六边形鳞片紧密拼接而成,采用分层结构设计,具有很好的柔性和防护能力。本文借鉴犰狳外壳的几何排列模式,采用SiC陶瓷片模仿硬质壳层,超高分子量聚乙烯(UHMWPE)热压板模仿软质壳层,按1∶1厚度比例设计制备仿生复合鳞片,将仿生鳞片紧密排列后封装制成一种新型柔性复合防弹插板。为了验证该种防弹插板的防弹性能并研究其破坏特征,进行弹道极限V0试验测试,结合有限元模拟分析其抗7.62 mm手枪弹侵彻的能力。结果表明:该柔性防弹插板不仅满足防弹性能要求,且具备较好的柔性,可为今后新型防弹插板的设计和优化提供参考。

     

  • 图  1  犰狳外壳分层结构[15]

    Figure  1.  Layered structure of the armadillo shell[15]

    图  2  复合鳞片与防弹插板图片

    Figure  2.  Pictures of composite scale and ballistic plate ((a) Composite scale; (b) Ballistic plate; (c) X-ray photograph of ballistic plate)

    图  3  防弹插板有限元模型

    Figure  3.  Finite element model of ballistic plate

    图  4  复合鳞片和垫层局部加密网格

    Figure  4.  Denser finite element mesh in partial areas of composite scale and backing layers

    图  5  7.62 mm手枪弹有限元模型

    Figure  5.  Finite element model of 7.62 mm handgun bullet

    图  6  7.62 mm手枪弹侵彻后防弹插板X射线与局部破坏照片

    Figure  6.  X-ray photographs and local damage photos of ballistic plate after the penetration of 7.62 mm handgun bullet( (a) Lead-core bullet; (b) Steel-core bullet)

    图  7  图6中侵彻点(4)处防弹插板破坏形貌

    Figure  7.  Appearance of ballistic plate at reference point (4) in Fig.6 ((a) Composite scale; (b) Backing layers)

    图  8  7.62 mm手枪弹破坏形貌

    Figure  8.  Failure morphologies of 7.62 mm handgun bullets ( (a) Lead-core bullet; (b) Steel-core bullet)

    图  9  试验测试和数值模拟的防弹插板凹陷深度对比

    Figure  9.  Comparison of back-face signature of ballistic plate obtained by experiments and finite element simulations

    图  10  7.62 mm铅芯手枪弹侵彻防弹插板的破坏过程

    Figure  10.  Damage process of ballistic plate penetrated by 7.62 mm lead-core handgun bullet

    图  11  7.62 mm铅芯手枪弹z方向速度和加速度-时间曲线

    Figure  11.  Velocity and acceleration-time history curves in z direction of 7.62 mm lead-core handgun bullet

    图  12  7.62 mm铅芯手枪弹侵彻防弹插板的Von Mises应力云图

    Figure  12.  Von Mises stress contours of ballistic plate under the penetration of 7.62 mm lead-core handgun bullet ( (a) SiC layer of composite scale; (b) UHMWPE layer of composite scale; (c) Backing layers)

    图  13  集中荷载作用下防弹插板的荷载-位移曲线

    Figure  13.  Load-displacement curves of ballistic plate under concentrated loading

    表  1  SiC陶瓷的物理力学性能

    Table  1.   Physical and mechanical properties of SiC ceramic

    Density/
    (g·cm−3)
    Elastic modulus/
    GPa
    Vickers hardness/
    HV
    Compressive strength/
    MPa
    Flexural strength/
    MPa
    Fracture toughness/
    (MPa·m1/2)
    3.10 410 2 600 2 200 400 4.0
    下载: 导出CSV

    表  2  超高分子量聚乙烯(UHMWPE)纤维与Kevlar纤维的物理力学性能

    Table  2.   Physical and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fiber and Kevlar fiber

    Type of fiberDensity/(g·cm−3)Tensile strength/MPaTensile modulus/GPaElongation at break/%
    UHMWPE0.973.0953.6
    Kevlar1.443.38833.3
    下载: 导出CSV

    表  3  SiC材料模型参数[22]

    Table  3.   Material model parameters of SiC[22]

    ρ/(g·cm−3)G/GPaABCMN
    3.10 183 0.96 0.35 0.0 1.0 0.65
    Reference strain rate Tensile strength/GPa Normalized fracture strength Hugoniot elastic limit (HEL)/GPa HEL pressure/GPa HEL Vol. strain HEL strength/GPa
    1.0 0.37 0.8 14.567 5.9 0 13.0
    D1 D2 K1/GPa K2/GPa K3/GPa β PSFAIL
    0.48 0.48 204.785 0 0 1.0
    Notes: ρ—Density; G—Shear modulus; A—Intact normalized strength parameter; B—Fractured normalized strength parameter; C—Strength parameter (for strain rate dependence) ; M—Fractured strength parameter (pressure exponent) ; N—Intact strength parameter (pressure exponent) ; D1—Parameter for plastic strain to fracture; D2—Parameter for plastic strain to fracture (exponent) ; K1—First pressure coefficient (equivalent to the bulk modulus) ; K2—Second pressure coefficient; K3—Elastic constants; β—Fraction of elastic energy loss converted to hydrostatic energy; PSFAIL—Effective plastic strain at failure.
    下载: 导出CSV

    表  4  UHMWPE材料模型参数[23]

    Table  4.   Material model parameters of UHMWPE[23]

    ρ/(g·cm−3)P1P2P3P4P5P6
    0.97 5.796 5.796 6.12561 0.025 3.58889 0.41368
    P7 P8 P9 P10 P11 P12 P13
    0.25 3.709 2.884 1 0.05 6.6939 0.05
    P14 P15 P16 P17 P18 P19 P20
    2.29 2.29 0.025 0.2645 0 0.185 1.3328
    P21 P22 P23 P24 P25 P26 P27
    0.28285 4.63 0.28285 4.63 0.28285 2.25 −0.005
    Notes: P1, P2, P3—Moduli of elasticity in x, y and z directions; P4—Stretching poisson's ratio in xy plane; P5—Shear modulus in xy plane; P6—Yield stress in xy plane; P7—Failure strain in xy direction; P8, P9—Linear buckling parameters; P10—Unloading modulus factor in xy plane; P11xy plane; P12—Unloading modulus in z direction; P13—Tensile modulus factor in z directions; P14, P15, P16—Shear moduli in yz, zx and xy planes; P17—Compression failure strain in z directions; P18—Tensile failure strain in z direction; P19—Local strain of area 1 in z direction; P20—Modulus of elasticity of area 1 in z direction; P21, P22C, P parameters of area 2; P23, P24C, P parameters of area 1; P25, P26C, P parameters in xy plane; P27—Parameter of strain rate.
    下载: 导出CSV

    表  5  7.62 mm手枪弹材料模型参数[18]

    Table  5.   Material model parameters of 7.62 mm handgun bullet[18]

    MaterialDensity/(g·cm−3)Modulus of elasticity/GPaPoisson's ratioYield stress/GPaTangent modulus/GPa
    Lead 11.270 17 0.40 0.008 0.015
    Steel 7.850 210 0.33 0.355 0.0
    Copper 8.858 117 0.40 0.345 0.0
    下载: 导出CSV

    表  6  防弹插板弹道性能测试结果

    Table  6.   Test result of ballistic performance of ballistic plate

    Bullet materialNumber of reference pointMuzzle velocity/(m·s−1)Backface signature/mmNumber of penetrated backing layers
    Lead-core bullet (1) 442 7.2 0
    (2) 437 9.0 3
    (3) 445 10.5 4
    Steel-core bullet (4) 433 8.1 6
    (5) 435 10.2 8
    (6) 432 13.5 17
    下载: 导出CSV
  • [1] LIU W, CHEN Z, CHENG X, et al. Design and ballistic penetration of the ceramic composite armor[J]. Composites Part B: Engineering,2016,84:33-40. doi: 10.1016/j.compositesb.2015.08.071
    [2] SARVA S, NEMAT-NASSER S, MCGEE J, et al. The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles[J]. International Journal of Impact Engineering,2007,34(2):277-302. doi: 10.1016/j.ijimpeng.2005.07.006
    [3] MEDVEDOVSKI E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1[J]. Ceramics International,2010,36(7):2103-2115. doi: 10.1016/j.ceramint.2010.05.021
    [4] TABIEI A, NILAKANTAN G. Multi-scale ballistic impact simulation of dry woven fabric with elastic crimped fibers[J]. International Journal of Vehicle Structures & Systems (IJVSS),2011,3(2):74-79.
    [5] NAIK N K, KUMAR S, RATNAVEER D, et al. An energy-based model for ballistic impact analysis of ceramic-composite armors[J]. International Journal of Damage Mechanics,2013,22(2):145-187. doi: 10.1177/1056789511435346
    [6] LIU W, CHEN Z, CHEN Z, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor[J]. Materials & Design,2015,87:421-427.
    [7] EVCI C, Gülgeç M. Effective damage mechanisms and performance evaluation of ceramic composite armors subjected to impact loading[J]. Journal of Composite Materials,2014,48(26):3215-3236. doi: 10.1177/0021998313508594
    [8] JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials[J]. Ceramics International,2017,43(2):2697-2704. doi: 10.1016/j.ceramint.2016.11.087
    [9] HUANG G W, CHEN A J, LUO S M, et al. Study on numerical simulation of projectile penetrating UHMWPE fiber layers and effects of projectile parameters[C]//Advanced Materials Research. Trans Tech Publications, 2013, 630: 121-126.
    [10] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures,2015,133:191-201. doi: 10.1016/j.compstruct.2015.06.081
    [11] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071
    [12] 朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):1636-1645.

    ZHU Deju, ZHANG Chaohui, LIU Peng. Study on the design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):1636-1645(in Chinese).
    [13] 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.

    ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese).
    [14] LIU P, ZHU D, YAO Y, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system[J]. Materials & Design,2016,99:201-210.
    [15] CHEN I H, KIANG J H, CORREA V, et al. Armadillo armor: Mechanical testing and micro-structural evaluation[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(5):713-722. doi: 10.1016/j.jmbbm.2010.12.013
    [16] KAUFMANN C, CRONIN D, WORSWICK M, et al. Influence of material properties on the ballistic performance of ceramics for personal body armour[J]. Shock and Vibration,2003,10(1):51-58. doi: 10.1155/2003/357637
    [17] BAIN A D. Non-scalar flexible rifle defeating armor system: US, 9, 534, 872[P]. 2017-1-3.
    [18] 刘鹏. 鳞片多级结构、力学性能及其仿生研究[D]. 长沙: 湖南大学, 2017.

    LIU Peng. The research on hierarchical structure mechanical behavior and biomimetic of fish scales[D]. Changsha: Hu'nan University, 2017(in Chinese).
    [19] 中国人民解放军总后勤部. 军用防弹衣安全技术性能要求: GJB 4300A—2012[S]. 北京: 中国标准出版社, 2012.

    The General Logistics Department of PLA. Requirements of safety technical performance for military body armor: GJB 4300A—2012[S]. Beijing: Standars Press of China, 2012(in Chinese).
    [20] TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures[J]. Ceramics International,2019,45(2):1651-1660. doi: 10.1016/j.ceramint.2018.10.042
    [21] BÜRGER D, DE FARIA A R, DE ALMEIDA S F M, et al. Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours[J]. International Journal of Impact Engineering,2012,43:63-77. doi: 10.1016/j.ijimpeng.2011.12.001
    [22] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna[C]//Proceedings of the 4th European LS-DYNA Users Conference. 2003, 1: 47-60.
    [23] DHANDAPANI K. Experimental investigation and development of a constitutive model for ultra high molecular weight polyethylene materials[D]. Phoenix: Arizona State University, 2009.
    [24] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析[J]. 振动与冲击, 2018, 37(13):20-26.

    SUN Fei, MA Li, ZHU Yihui, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor[J]. Journal of Vibration and Shock,2018,37(13):20-26(in Chinese).
    [25] CHELLURU S K. Finite element simulations of ballistic impact on metal and composite plates[D]. Wichita: Wichita State University, 2007.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  1571
  • HTML全文浏览量:  514
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回